

Ben Forta

800 East 96th Street, Indianapolis, Indiana, 46240 USA

Microsoft®

SQL Server
T-SQL

SamsTeachYourself

10in

Minutes

Sams Teach Yourself Microsoft® SQL Server T-SQL in 10
Minutes
Copyright © 2008 by Sams Publishing

All rights reserved. No part of this book shall be reproduced,
stored in a retrieval system, or transmitted by any means, elec-
tronic, mechanical, photocopying, recording, or otherwise, without
written permission from the publisher. No patent liability is
assumed with respect to the use of the information contained
herein. Although every precaution has been taken in the prepara-
tion of this book, the publisher and author assume no responsibil-
ity for errors or omissions. Nor is any liability assumed for dam-
ages resulting from the use of the information contained herein.

ISBN-10: 0-672-32867-4

ISBN-13: 978-0-672-32867-1

Library of Congress Catalog Card Number: 2006922043

Printed in the United States of America

First Printing: August 2007

Trademarks
All terms mentioned in this book that are known to be trademarks
or service marks have been appropriately capitalized. Sams
Publishing cannot attest to the accuracy of this information. Use
of a term in this book should not be regarded as affecting the
validity of any trademark or service mark.

Warning and Disclaimer
Every effort has been made to make this book as complete and
as accurate as possible, but no warranty or fitness is implied. The
information provided is on an “as is” basis. The author and the
publisher shall have neither liability nor responsibility to any per-
son or entity with respect to any loss or damages arising from the
information contained in this book.

Bulk Sales
Sams Publishing offers excellent discounts on this book when
ordered in quantity for bulk purchases or special sales. For more
information, please contact

U.S. Corporate and Government Sales
1-800-382-3419
corpsales@pearsontechgroup.com

For sales outside of the U.S., please contact

International Sales
international@pearsoned.com

Acquisitions
Editors
Loretta Yates
Damon Jordon

Development
Editor
Mark Renfrow

Managing
Editor
Patrick Kanouse

Project Editor
Mandie Frank

Copy Editor
Bart Reed

Indexer
WordWise
Publishing
Services, LLC.

Proofreader
Elizabeth Scott

Technical Editor
Jon Price

Publishing
Coordinator
Vanessa Evans

Designer
Gary Adair

Table of Contents

Introduction 1

Who Is This Book For? . 2

Companion Website . 2

Conventions Used in This Book . 3

1 Understanding SQL 5

Database Basics . 5

What Is SQL? . 11

Try It Yourself . 12

Summary . 12

2 Introducing SQL Server 13

What Is SQL Server? . 13

SQL Server Tools . 16

Summary . 18

3 Working with SQL Server 19

Making the Connection . 19

Selecting a Database . 20

Learning About Databases and Tables . 21

Summary . 25

4 Retrieving Data 27

The SELECT Statement . 27

Retrieving Individual Columns . 27

Retrieving Multiple Columns . 29

Retrieving All Columns . 31

Retrieving Distinct Rows . 32

Limiting Results . 33

Using Fully Qualified Table Names . 36

Summary . 36

5 Sorting Retrieved Data 37

Sorting Data . 37

Sorting by Multiple Columns . 39

Specifying Sort Direction . 40

Summary . 43

6 Filtering Data 45

Using the WHERE Clause . 45

The WHERE Clause Operators . 46

Summary . 52

7 Advanced Data Filtering 53

Combining WHERE Clauses . 53

Using the IN Operator . 57

Using the NOT Operator . 59

Summary . 60

8 Using Wildcard Filtering 61

Using the LIKE Operator . 61

Tips for Using Wildcards . 67

Summary . 67

9 Creating Calculated Fields 69

Understanding Calculated Fields . 69

Concatenating Fields. 70

Performing Mathematical Calculations . 75

Summary . 77

iv Sams Teach Yourself Microsoft SQL Server T-SQL in 10 Minutes

10 Using Data Manipulation Functions 79

Understanding Functions . 79

Using Functions . 80

Summary . 89

11 Summarizing Data 91

Using Aggregate Functions . 91

Aggregates on Distinct Values . 98

Combining Aggregate Functions . 100

Summary. 100

12 Grouping Data 101

Understanding Data Grouping . 101

Creating Groups . 102

Filtering Groups . 103

Grouping and Sorting . 106

SELECT Clause Ordering . 108

Summary. 109

13 Working with Subqueries 111

Understanding Subqueries . 111

Filtering by Subquery . 111

Using Subqueries as Calculated Fields . 116

Checking for Existence with Subqueries . 119

Summary. 121

14 Joining Tables 123

Understanding Joins . 123

Creating a Join . 126

Summary. 135

vContents

15 Creating Advanced Joins 137

Using Table Aliases . 137

Using Different Join Types . 138

Using Joins with Aggregate Functions . 145

Using Joins and Join Conditions . 147

Summary. 147

16 Combining Queries 149

Understanding Combined Queries . 149

Creating Combined Queries . 150

Summary. 155

17 Full-Text Searching 157

Understanding Full-Text Searching . 157

Setting Up Full-Text Searching . 158

Performing Full-Text Searches . 162

Summary. 170

18 Inserting Data 171

Understanding Data Insertion . 171

Inserting Complete Rows . 172

Inserting Multiple Rows . 176

Inserting Retrieved Data . 177

Summary. 179

19 Updating and Deleting Data 181

Updating Data. 181

Deleting Data . 183

Guidelines for Updating and Deleting Data . 184

Summary. 185

vi Sams Teach Yourself Microsoft SQL Server T-SQL in 10 Minutes

20 Creating and Manipulating Tables 187

Creating Tables . 187

Updating Tables . 195

Deleting Tables . 197

Renaming Tables . 198

Summary. 198

21 Using Views 199

Understanding Views . 199

Using Views . 201

Summary. 208

22 Programming with T-SQL 209

Understanding T-SQL Programming . 209

Using Variables . 210

Using Conditional Processing . 217

Grouping Statements . 219

Using Looping. 221

Summary. 222

23 Working with Stored Procedures 223

Understanding Stored Procedures . 223

Why Use Stored Procedures. 224

Using Stored Procedures . 225

Summary. 234

24 Using Cursors 235

Understanding Cursors . 235

Working with Cursors . 235

Summary. 242

viiContents

25 Using Triggers 243

Understanding Triggers . 243

Using Triggers . 247

Summary. 250

26 Managing Transaction Processing 251

Understanding Transaction Processing . 251

Controlling Transactions . 253

Summary. 258

27 Working with XML 259

Understanding SQL Server XML Support . 259

Retrieving Data as XML. 260

Storing XML Data . 264

Searching for XML Data . 267

Summary. 268

28 Globalization and Localization 269

Understanding Character Sets and Collation Sequences 269

Working with Collation Sequences . 270

Managing Case Sensitivity . 273

Working with Unicode . 275

Summary. 277

29 Managing Security 279

Understanding Access Control . 279

Managing Users. 281

Managing Access Rights . 283

Summary. 285

viii Sams Teach Yourself Microsoft SQL Server T-SQL in 10 Minutes

30 Improving Performance 287

Improving Performance . 287

Summary. 289

Appendixes

A Getting Started with SQL Server and T-SQL 291

What You’ll Need . 291

Obtaining the Software . 292

Installing the Software . 292

Preparing for Your Lessons . 293

B The Example Tables 295

Understanding the Example Tables . 295

Creating the Example Tables . 300

C T-SQL Statement Syntax 303

BEGIN TRANSACTION . 303

ALTER TABLE . 304

COMMIT TRANSACTION . 304

CREATE INDEX . 304

CREATE LOGIN . 305

CREATE PROCEDURE . 305

CREATE TABLE . 305

CREATE VIEW . 306

DELETE . 306

DROP . 306

INSERT . 306

INSERT SELECT . 307

ROLLBACK TRANSACTION. 307

ixContents

SAVE TRANSACTION . 307

SELECT . 308

UPDATE . 308

D T-SQL Datatypes 309

String Datatypes . 310

Numeric Datatypes . 311

Date and Time Datatypes . 312

Binary Datatypes . 313

Other Datatypes . 313

E T-SQL Reserved Words 315

Index 321

About the Author

Ben Forta is Adobe Systems’s Senior Technical Evangelist and has over
20 years of experience in the computer industry in product development,
support, training, and product marketing. Ben is the author of the best-
selling Sams Teach Yourself SQL in 10 Minutes (now in its third edition,
and translated into more than a dozen languages), MySQL Crash Course,
ColdFusion Web Application Construction Kit and Advanced ColdFusion
Development (both published by Que), Sams Teach Yourself Regular
Expressions in 10 Minutes, as well as books on Flash, Java, WAP,
Windows 2000, and other subjects. He has extensive experience in data-
base design and development, has implemented databases for several
highly successful commercial software programs, and is a frequent lectur-
er and columnist on Internet and database technologies. Born in London,
England, and educated in London, New York, and Los Angeles, Ben now
lives in Oak Park, Michigan with his wife Marcy and their seven children.
Ben welcomes your email at ben@forta.com, and invites you to visit his
website at http://www.forta.com/.

http://www.forta.com/

Acknowledgments

First of all, I’d like to thank the folks at Sams for once again granting me
the flexibility and freedom to build this book as I saw fit. Thanks to Mark
Renfrow for once again providing invaluable and thorough feedback.
Special thanks to Loretta Yates, Damon Jordan, and Mark Taber for
bravely stepping in midstream and helping get this book back on track
despite all of the changes and delays.

Thanks to Jon Price, one of the most thorough technical editors I have had
the privilege of working with yet.

And finally, this book (as well as my MySQL Crash Course) is based on
my Sams Teach Yourself SQL in 10 Minutes. The feedback that that book
received is gratefully appreciated, and this volume is the result of many of
your suggestions. Thank you, and I hope I have lived up to your
expectations.

We Want to Hear from You!
As the reader of this book, you are our most important critic and commen-
tator. We value your opinion and want to know what we’re doing right,
what we could do better, what areas you’d like to see us publish in, and
any other words of wisdom you’re willing to pass our way.

You can email or write me directly to let me know what you did or didn’t
like about this book, as well as what we can do to make our books
stronger.

Please note that I cannot help you with technical problems related to the
topic of this book, and that due to the high volume of mail I receive, I
might not be able to reply to every message.

When you write, please be sure to include this book’s title and author as
well as your name and phone or email address. I will carefully review
your comments and share them with the author and editors who worked
on the book.

Email: opensourcefeedback@samspublishing.com

Mail: Mark Taber
Associate Publisher
Sams Publishing
800 East 96th Street
Indianapolis, IN 46240 USA

Reader Services

Visit our website and register this book at www.samspublishing.com/
register for convenient access to any updates, downloads, or errata that
might be available for this book.

This book also has a companion website at http://www.forta.com/books/
0672328674. Visit this site for errata, downloads, a support forum, and
more.

www.samspublishing.com/register
http://www.forta.com/books/0672328674
http://www.forta.com/books/0672328674
www.samspublishing.com/register

This page intentionally left blank

Introduction

Microsoft® SQL Server has become one of the most popular database
management systems in the world. From small development projects to
some of the best-known and most prestigious sites on the Web, SQL
Server has proven itself to be a solid, reliable, fast, and trusted solution to
all sorts of data-storage needs.

This book is based on my best-selling book Sams Teach Yourself SQL in
10 Minutes, which has become one of the most-used SQL tutorials in the
world, with an emphasis on teaching what you really need to know,
methodically, systematically, and simply. But as popular and as successful
as that book is, it does have some limitations:

. In covering all the major DBMSs, coverage of DBMS-specific
features and functionality had to be kept to a minimum.

. To simplify the SQL taught, the lowest common denominator
had to be found; SQL statements that would (as much as possi-
ble) work with all major DBMSs. This requirement necessitated
that better DBMS-specific solutions not be covered.

. Although basic SQL tends to be rather portable between
DBMSs, more advanced SQL most definitely is not. As such,
that book could not cover advanced topics, such as triggers, cur-
sors, stored procedures, access control, transactions, and more in
any real detail.

And that is where this book comes in. Sams Teach Yourself Microsoft®

SQL Server T-SQL in 10 Minutes builds on the proven tutorials and struc-
ture of Sams Teach Yourself SQL in 10 Minutes, without getting bogged
down with anything but Transact-SQL (T-SQL, for short). It starts with
simple data retrieval and works on to more complex topics, including the
use of joins, subqueries, full text-based searches, functions and stored pro-
cedures, cursors, triggers, table constraints, XML, and much more. You’ll

learn what you need to know methodically, systematically, and simply in
highly focused lessons designed to make you immediately and effortlessly
productive.

2 Sams Teach Yourself Microsoft SQL Server T-SQL in 10 Minutes

NOTE: Written for SQL Server 2005

This book was written with SQL Server 2005 in mind, and covers
features and technologies new to that version of the software.
However, with the exception of two lessons, the content and lessons
can be used with earlier versions of SQL Server, including SQL
Server 2000.

So turn to Lesson 1, “Understanding SQL,” and get to work. You’ll be
taking advantage of all SQL Server has to offer in no time at all.

Who Is This Book For?
This book is for you if…

. You are new to SQL.

. You are just getting started with SQL Server and want to hit the
ground running.

. You want to quickly learn how to get the most out of SQL
Server and T-SQL.

. You want to learn how to use T-SQL in your own application
development.

. You want to be productive quickly and easily using SQL Server
without having to call someone for help.

Companion Website
This book has a companion website online at http://forta.com/books/
0672328674/.

http://forta.com/books/0672328674/
http://forta.com/books/0672328674/

Visit the site to access the following:

. Table creation and population scripts used to create the sample
tables used throughout this book

. The online support forum

. Online errata (should one be required)

. Other books that may be of interest to you

Conventions Used in This Book
This book uses different typefaces to differentiate between code and regu-
lar English, and also to help you identify important concepts.

Text that you type and text that should appear on your screen is presented
in monospace type. It looks like this to mimic the way text
looks on your screen.

Placeholders for variables and expressions appear in monospace italic
font. You should replace the placeholder with the specific value it
represents.

This arrow (➥) at the beginning of a line of code means that a single line
of code is too long to fit on the printed page. Continue typing all the char-
acters after the ➥ as though they were part of the preceding line.

3Introduction

NOTE: A note presents interesting pieces of information related to
the surrounding discussion.

TIP: A tip offers advice or teaches an easier way to do something.

CAUTION: A caution advises you about potential problems and
helps you steer clear of disaster.

Input ▼

Input identifies code that you can type in yourself. It usually appears next
to a listing.

Output ▼

Output highlights the output produced by running T-SQL code. It usually
appears after a listing.

Analysis ▼

Analysis alerts you to the author’s line-by-line analysis of input or output.

4 Sams Teach Yourself Microsoft SQL Server T-SQL in 10 Minutes

PLAIN ENGLISH: New Term icons provide clear definitions of new,
essential terms.

LESSON 1

Understanding SQL

In this lesson, you’ll learn about databases and SQL, prerequisites to
learning T-SQL.

Database Basics
The fact that you are reading this book indicates that you, somehow, need
to interact with databases. So before diving into SQL Server and its
T-SQL implementation of the SQL language, it is important that you under-
stand some basic concepts about databases and database technologies.

Whether you are aware of it or not, you use databases all the time. Each
time you select a name from your email address book, you are using a
database. If you conduct a search on an Internet search site, you are using
a database. When you log into your network at work, you are validating
your name and password against a database. Even when you use your
ATM card at a cash machine, you are using databases for PIN verification
and balance checking.

But even though we all use databases all the time, there remains much
confusion over what exactly a database is. This is especially true because
different people use the same database terms to mean different things.
Therefore, a good place to start our study is with a list and explanation of
the most important database terms.

6 LESSON 1: Understanding SQL

TIP: Reviewing Basic Concepts

What follows is a very brief overview of some basic database con-
cepts. It is intended either to jolt your memory, if you already have
some database experience, or to provide you with the absolute
basics, if you are new to databases. Understanding databases is an
important part of mastering SQL Server and T-SQL, and you might
want to find a good book on database fundamentals to brush up on
the subject if needed.

What Is a Database?
The term database is used in many different ways, but for our purposes a
database is a collection of data stored in some organized fashion. The
simplest way to think of it is to imagine a database as a filing cabinet. The
filing cabinet is simply a physical location to store data, regardless of
what that data is or how it is organized.

PLAIN ENGLISH: Database

A container (usually a file or set of files) to store organized data.

CAUTION: Misuse Causes Confusion

People often use the term database to refer to the database soft-
ware they are running. This is incorrect, and it is a source of much
confusion. Database software is actually called the Database
Management System (or DBMS). The database is the container cre-
ated and manipulated via the DBMS. A database might be a file
stored on a hard drive, but it might not. And for the most part, this
is not even significant because you never access a database directly
anyway; you always use the DBMS, and it accesses the database
for you.

Tables
When you store information in your filing cabinet, you don’t just toss it in
a drawer. Rather, you create files within the filing cabinet, and then you
file related data in specific files.

In the database world, that file is called a table. A table is a structured file
that can store data of a specific type. A table might contain a list of cus-
tomers, a product catalog, or any other list of information.

7Database Basics

PLAIN ENGLISH: Table

A structured list of data of a specific type.

The key here is that the data stored in the table is one type of data or one
list. You would never store a list of customers and a list of orders in the
same database table. Doing so would make subsequent retrieval and
access difficult. Rather, you’d create two tables, one for each list.

Every table in a database has a name that identifies it. That name is
always unique, meaning no other table in that database can have the same
name.

NOTE: Table Names

What makes a table name unique is actually a combination of sever-
al things, including the database name and table name. This means
that although you cannot use the same table name twice in the
same database, you definitely can reuse table names in different
databases.

Tables have characteristics and properties that define how data is stored in
them. These include information about what data may be stored, how it is
broken up, how individual pieces of information are named, and much
more. This set of information that describes a table is known as a schema,
and schemas are used to describe specific tables within a database, as well
as entire databases (and the relationship between tables in them, if any).

PLAIN ENGLISH: Schema

Information about database and table layout and properties.

Columns and Datatypes
Tables are made up of columns. A column contains a particular piece of
information within a table.

8 LESSON 1: Understanding SQL

PLAIN ENGLISH: Column

A single field in a table. All tables are made up of one or more
columns.

The best way to understand this is to envision database tables as grids,
somewhat like spreadsheets. Each column in the grid contains a particular
piece of information. In a customer table, for example, one column con-
tains the customer number, another contains the customer name, and the
address, city, state, and ZIP Code are all stored in their own columns.

TIP: Breaking Up Data

It is extremely important to break data into multiple columns correct-
ly. For example, city, state, and ZIP Code should always be separate
columns. By breaking these out, it becomes possible to sort or filter
data by specific columns (for example, to find all customers in a par-
ticular state or in a particular city). If city and state are combined
into one column, it would be extremely difficult to sort or filter by
state.

Each column in a database has an associated datatype. A datatype defines
what type of data the column can contain. For example, if the column is
to contain a number (perhaps the number of items in an order), the
datatype would be numeric. If the column were to contain dates, text,
notes, currency amounts, and so on, the appropriate datatype would be
used to specify this.

PLAIN ENGLISH: Datatype

A type of allowed data. Every table column has an associated
datatype that restricts (or allows) specific data in that column.

Datatypes restrict the type of data that can be stored in a column (for
example, preventing the entry of alphabetical characters into a numeric
field). Datatypes also help sort data correctly, and they play an important
role in optimizing disk usage. As such, special attention must be given to
picking the right datatype when tables are created.

Rows
Data in a table is stored in rows; each record saved is stored in its own
row. Again, envisioning a table as a spreadsheet-style grid, the vertical
columns in the grid are the table columns, and the horizontal rows are the
table rows.

For example, a customers table might store one customer per row. The
number of rows in the table is the number of records in it.

9Database Basics

PLAIN ENGLISH: Row

A record in a table.

NOTE: Records or Rows?

You might hear users refer to database records when referring to
rows. For the most part, the two terms are used interchangeably, but
row is technically the correct term.

Primary Keys
Every row in a table should have some column (or set of columns) that
uniquely identifies it. A table containing customers might use a customer
number column for this purpose, whereas a table containing orders might
use the order ID. An employee list table might use an employee ID or the
employee Social Security number column.

10 LESSON 1: Understanding SQL

TIP: Always Define Primary Keys

Although primary keys are not actually required, most database
designers ensure that every table they create has a primary key so
future data manipulation is possible and manageable.

Any column in a table can be established as the primary key, as long as it
meets the following conditions:

. No two rows can have the same primary key value.

. Every row must have a primary key value (primary key columns
may not allow NULL values).

NOTE: Primary Key Rules

The rules listed here are enforced by SQL Server itself.

Primary keys are usually defined on a single column within a table. But
this is not required, and multiple columns may be used together as a pri-
mary key. When multiple columns are used, the rules previously listed
must apply to all columns that make up the primary key, and the values of
all columns together must be unique (individual columns need not have
unique values).

PLAIN ENGLISH: Primary Key

A column (or set of columns) whose values uniquely identify every
row in a table.

This column (or set of columns) that uniquely identifies each row in a
table is called a primary key. The primary key is used to refer to a specific
row. Without a primary key, updating or deleting specific rows in a table
becomes extremely difficult because there is no guaranteed safe way to
refer to just the rows to be affected.

11What Is SQL?

TIP: Primary Key Best Practices

In addition to the rules that SQL Server enforces, several universally
accepted best practices should be adhered to:

. Don’t update values in primary key columns.

. Don’t reuse values in primary key columns.

. Don’t use values that might change in primary key columns. (For
example, when you use a name as a primary key to identify a
supplier, you would have to change the primary key when the
supplier merges and changes its name.)

There is another very important type of key called a foreign key, but I’ll
get to that later on in Lesson 14, “Joining Tables.”

What Is SQL?
SQL (pronounced as the letters S-Q-L or as sequel) is an abbreviation for
Structured Query Language. SQL is a language designed specifically for
communicating with databases.

Unlike other languages (spoken languages, such as English, or program-
ming languages, such as Java or Visual Basic), SQL is made up of very
few words. This is deliberate. SQL is designed to do one thing and do it
well: provide you with a simple and efficient way to read and write data
from a database.

What are the advantages of SQL?

. SQL is not a proprietary language used by specific database ven-
dors. Almost every major DBMS supports SQL, so learning this
one language enables you to interact with just about every data-
base you’ll run into.

. SQL is easy to learn. The statements are all made up of descrip-
tive English words, and there aren’t that many of them.

. Despite its apparent simplicity, SQL is actually a very powerful
language, and by cleverly using its language elements you can
perform very complex and sophisticated database operations.

12 LESSON 1: Understanding SQL

NOTE: DBMS-Specific SQL

Although SQL is not a proprietary language and a standards commit-
tee exists that tries to define SQL syntax that can be used by all
DBMSs, the reality is that no two DBMSs implement SQL identically.
The SQL taught in this book is T-SQL (Transact-SQL) and is specific
to Microsoft SQL Server, and although much of the language taught
will be usable with other DBMSs, do not assume complete SQL syn-
tax portability.

Try It Yourself
All the lessons in this book use working examples, showing you the SQL
syntax, what it does, and explaining why it does it. I’d strongly suggest
that you try each and every example for yourself so as to learn T-SQL
first hand.

Appendix B, “The Example Tables,” describes the example tables used
throughout this book, and explains how to obtain and install them. If you
have not done so, refer to this appendix before proceeding.

NOTE: You Need SQL Server

Obviously, you’ll need access to a copy of SQL Server to follow
along. Appendix A, “Getting Started with SQL Server,” explains where
to get a copy of SQL Server and provides some pointers for getting
started. If you do not have access to a copy of SQL Server, refer to
that appendix before proceeding.

Summary
In this first lesson, you learned what SQL is and why it is useful. Because
SQL is used to interact with databases, you also reviewed some basic
database terminology.

LESSON 2

Introducing SQL Server

In this lesson, you’ll learn what SQL Server is and the tools you can use
when working with it.

What Is SQL Server?
In the previous lesson, you learned about databases and SQL. As
explained, it is the database software (DBMS or Database Management
System) that actually does all the work of storing, retrieving, managing,
and manipulating data. SQL Server is a DBMS; that is, it is database soft-
ware.

SQL Server has been around for a long time and is in use at millions of
installations worldwide. Why do so many organizations and developers
use SQL Server? Here are some of the reasons:

. Performance: SQL Server is fast (make that very fast).

. Trusted: SQL Server is used by some of the most important and
prestigious organizations and sites, all of whom entrust it with
their critical data.

. Integration: SQL Server is tightly integrated with other
Microsoft offerings.

. Simplicity: SQL Server is one of the easiest DBMSs to install
and get up and running, and includes administrative tools that
make management of the server painless and simple.

So why not use SQL Server? First and foremost, SQL Server only runs on
Windows, and if your servers run other another operating system (such as
Linux), then obviously you’ll not be able to use SQL Server. In addition,

SQL Server is a commercial product, and for those interested in no-cost
open-source offerings, other DBMSs may be more attractive. And finally,
SQL Server has been criticized for not supporting high-end enterprise fea-
tures (such as clustering and fault tolerance) as well as some other
DBMSs, although this criticism has in many ways been addressed in SQL
Server 2005.

Client Server Software
DBMSs fall into two categories: shared file–based and client/server. The
former (which include products such as Microsoft Access and FileMaker)
are designed for desktop use and are generally not intended for use on
higher-end or more critical applications.

Databases such as SQL Server, Oracle, and MySQL are client/server–
based databases. Client/server applications are split into two distinct parts.
The server portion is a piece of software that is responsible for all data
access and manipulation. This software runs on a computer called the
database server.

Only the server software interacts with the data files. All requests for data,
data additions and deletions, and data updates are funneled through the
server software. These requests or changes come from computers running
client software. The client is the piece of software with which the user
interacts. If you request an alphabetical list of products, for example, the
client software submits that request over the network to the server soft-
ware. The server software processes the request; filters, discards, and sorts
data as necessary; and sends the results back to your client software.

14 LESSON 2: Introducing SQL Server

NOTE: How Many Computers?

The client and server software may be installed on two computers or
on one computer. Regardless, the client software communicates with
the server software for all database interaction, be it on the same
machine or not.

All this action occurs transparently to you, the user. The fact that data is
stored elsewhere or that a database server is even performing all this pro-
cessing for you is hidden. You never need to access the data files directly.

In fact, most networks are set up so that users have no access to the data,
or even the drives on which it is stored.

Why is this significant? Because to work with SQL Server, you’ll need
access to both a computer running the SQL Server software and client
software with which to issue commands to SQL Server:

. The server software is the SQL Server DBMS. You can run a
locally installed copy, or you can connect to a copy running on a
remote server to which you have access.

. The client can be SQL Server–included tools, scripting lan-
guages (such as Perl), web application development languages
(such as ASP, ASP.NET, ColdFusion, JSP, and PHP), program-
ming languages (such as Visual Basic, VB.NET, C, C++, C#,
and Java), and more.

SQL Server Versions
Client tools are revisited in a moment. First, a quick word about DBMS
versions.

The current version of SQL Server is SQL Server 2005 (although SQL
Server 2000 and prior versions are in use in many organizations). This
book was written for SQL Server 2005, with SQL Server 2000 in mind as
well (although much of the content will apply to prior versions as well).

15What Is SQL Server?

TIP: Use Version 2005

If at all possible, the use of SQL Server 2005 is recommended. Not
only will this make it possible for you to follow along with every les-
son in this book (including two lessons specific to features intro-
duced in SQL Server 2005), but you will also have the benefit of
using a technically superior product, one that features vastly superi-
or client tools.

NOTE: Version Requirements Noted

Any lesson that requires a specific version of SQL Server is clearly
noted as such at the start of that lesson.

SQL Server Tools
As just explained, SQL Server is a client/server DBMS, so to use SQL
Server you’ll need a client (an application that you use to interact with
SQL Server), giving it commands to be executed.

There are lots of client application options, but when learning SQL Server
(and indeed, when writing and testing SQL Server scripts) you are best
off using a utility designed for simple script execution. The ideal tool
depends on the version of SQL Server being used.

SQL Server 2005
SQL Server 2005 features a sophisticated client tool called Microsoft
SQL Server Management Studio. This tool can be used to create and man-
age databases and tables, control database access and security, run wiz-
ards to optimize and fine-tune DBMS performance, and, of course, run
SQL statements.

16 LESSON 2: Introducing SQL Server

TIP: Local or Remote

Microsoft SQL Server Management Studio can be used to connect
to local or remote DBMSs. So long as the DBMS is configured to
allow you to connect to it, you can connect to any database
anywhere.

There are many ways to use Microsoft SQL Server Management Studio,
but here are the basic steps needed to enter and test SQL statements:

. The New Query button at the top left of the screen opens a win-
dow where SQL statements are entered.

. As T-SQL statements are typed, Microsoft SQL Server
Management Studio automatically color-codes the statements
and text (this is an invaluable troubleshooting tool because it lets
you quickly spot typos or missing quotes and so on).

. To execute (run) a statement, click the Execute button (the one
with the red exclamation point on it). You can also press F5 or
Ctrl+E to execute a statement.

. To verify that a SQL statement is syntactically correct (without
executing it), click the Parse button (the one with the blue check
mark on it).

. Microsoft SQL Server Management Studio displays statement
results at the bottom of the screen. Results may be displayed in a
grid (the default behavior), as plain text, or saved to a file. You
can switch between these modes by clicking the appropriate
toolbar buttons.

. In addition to displaying statement results, Microsoft SQL
Server Management Studio also displays status messages (the
number of rows returned, for example) in a second tab labeled
Messages.

. To obtain help, click the statement you need help with and
press F1.

Microsoft SQL Server Management Studio can also be used to execute
saved scripts (SQL statements saved in files, such as the sample table-cre-
ation and -population scripts mentioned in Appendix B, “The Example
Tables”). In fact, all the output examples used in this book are grabs from
Microsoft SQL Server Management Studio (using plain-text output).

17SQL Server Tools

NOTE: Other Tools, Too

SQL Server 2005 also installs a whole suite of additional tools and
utilities. However, these are beyond the scope of this book.

SQL Server 2000
SQL Server 2000 features an easy-to-use client tool called SQL Query
Analyzer. This tool can be used to enter and execute SQL statements.
SQL Query Analyzer can be launched directly, or from within another
tool called SQL Enterprise Manager (which is used to create and manage
databases and tables, control database access and security, and more).

Here are the basic steps needed to enter and test SQL statements using
SQL Query Analyzer:

. The New Query button (the leftmost button on the toolbar)
opens a window where SQL statements are entered. You can
also press Ctrl+N to open a new query window.

. As T-SQL statements are typed, SQL Query Analyzer automati-
cally color-codes the statements and text (this is an invaluable
troubleshooting tool because it lets you quickly spot typos or
missing quotes and so on).

. To execute (run) a statement, click the Execute button (the one
with the green arrow on it). You can also press F5 or Ctrl+E to
execute a statement.

. To verify that a SQL statement is syntactically correct (without
executing it), click the Parse button (the one with the blue check-
mark on it).

. SQL Query Analyzer displays statement results at the bottom of
the screen. Database retrieval results are displayed in the Grid
tab, and messages (the number of rows returned, for example)
are displayed in the Messages tab.

Although not as sophisticated as SQL Server 2005’s Management Studio,
SQL Query Profiler is ideal for experimenting with and learning T-SQL.

Summary
In this lesson, you learned what exactly SQL Server is. You were also
introduced to the client utilities (one for each of SQL Server 2005 and
SQL Server 2000).

18 LESSON 2: Introducing SQL Server

LESSON 3

Working with SQL
Server

In this lesson, you’ll learn how to connect and log into SQL Server, how
to issue SQL Server statements, and how to obtain information about
databases and tables.

Making the Connection
Now that you have a SQL Server DBMS and client software to use with
it, it would be worthwhile to briefly discuss connecting to the database.

SQL Server, like all client/server DBMSs, requires that you log into the
DBMS before being able to issue commands. SQL Server can authenti-
cate users and logins using its own user list, or using the Windows user
list (the logins used to start using Windows). As such, depending on how
SQL Server is configured, it may log you in automatically using whatever
login you used for Windows itself, or it may prompt you for a login name
and password.

When you first installed SQL Server, you were probably prompted for an
administrative login (often named sa for system administrator) and a
password. If you are using your own local server and are simply experi-
menting with SQL Server, using this login is fine. In the real world, how-
ever, the administrative login is closely protected because access to it
grants full rights to create tables, drop entire databases, change logins and
passwords, and more.

To connect to SQL Server, you need the following pieces of information:

. The hostname (the name of the computer). This is localhost or
your own computer name if you’re connecting to a local SQL
Server.

. A valid username (if Windows authentication is not being used).

. The user password (if required).

If you’re using one of the client applications discussed in the previous les-
son, a dialog box will be displayed to prompt you for this information.

20 LESSON 3: Working with SQL Server

NOTE: Using Other Clients

If you are using a client other than the ones mentioned previously,
you still need to provide this information in order to connect to SQL
Server.

After you are connected, you have access to whatever databases and
tables your login name has access to. (Logins, access control, and security
are revisited in Lesson 29, “Managing Security.”)

Selecting a Database
When you first connect to SQL Server, a default database is opened for
you. This will usually be a database named master (which as a rule you
should never play with). Before you perform any database operations, you
need to select the appropriate database. To do this, you use the USE
keyword.

PLAIN ENGLISH: Keyword

A reserved word that is part of the T-SQL language. Never name a
table or column using a keyword. Appendix E, “T-SQL Reserved
Words,” lists the SQL Server keywords.

For example, to use the crashcourse database, you would enter the fol-
lowing (in a query window):

Input ▼

USE crashcourse;

Output ▼

Command(s) completed successfully.

Analysis ▼

The USE statement does not return any results. Depending on the client
used, some form of notification might be displayed (as seen here).

21Learning About Databases and Tables

TIP: Interactive Database Selection

In SQL Server Management Studio (or SQL Query Analyzer), you may
select a database from the drop-down list in the toolbar to use it.
You’ll not actually see the USE command being issued (although it is
being issued for you), but the database will change and the window
title bar will reflect this change.

Remember, you must always USE a database before you can access any
data in it.

Learning About Databases and
Tables
But what if you don’t know the names of the available databases? And for
that matter, how do the client applications obtain the list of available data-
bases that are displayed in the drop-down list?

Information about databases, tables, columns, users, privileges, and more,
are stored within databases and tables themselves (yes, SQL Server uses
SQL Server to store this information). These internal tables are all in the
master database (which is why you don’t want to tamper with it), and they

are generally not accessed directly. Instead, SQL Server includes a suite
of prewritten stored procedures that can be used to obtain this information
(information that SQL Server then extracts from those internal tables).

22 LESSON 3: Working with SQL Server

NOTE: Stored Procedures

Stored procedures will be covered in Lesson 23, “Working with
Stored Procedures.” For now, it will suffice to say that stored proce-
dures are SQL statements that are saved in SQL Server and can be
executed as needed.

Look at the following example:

Input ▼

sp_databases;

Output ▼

DATABASE_NAME DATABASE_SIZE REMARKS
----------------- ------------- -------
coldfusion 9096 NULL
crashcourse 3072 NULL
forta 2048 NULL
master 4608 NULL
model 1728 NULL
msdb 5824 NULL
tempdb 8704 NULL

Analysis ▼

sp_databases; returns a list of available databases. Included in this list
might be databases used by SQL Server internally (such as master and
tempdb in this example). Of course, your own list of databases might not
look like those shown above.

To obtain a list of tables within a database, use sp_tables;, as seen here:

Input ▼

sp_tables;

Analysis ▼

sp_tables; returns a list of available tables in the currently selected data-
base, and not just your tables; it also includes all sorts of system tables
and other entries (possibly hundreds of entries).

To obtain a list of tables (just tables, not views, and not system tables and
so on), you can use this statement:

Input ▼

sp_tables NULL, dbo, crashcourse, “‘TABLE’”;

Output ▼

TABLE_QUALIFIER TABLE_OWNER TABLE_NAME TABLE_TYPE REMARKS
--------------- ----------- ------------ ---------- -------
crashcourse dbo customers TABLE NULL
crashcourse dbo orderitems TABLE NULL
crashcourse dbo orders TABLE NULL
crashcourse dbo products TABLE NULL
crashcourse dbo vendors TABLE NULL
crashcourse dbo productnotes TABLE NULL
crashcourse dbo sysdiagrams TABLE NULL

Analysis ▼

Here, sp_tables accepts a series of parameters telling it which database
to use, as well as what specifically to list (‘TABLE’ as opposed to ‘VIEW’
or ‘SYSTEM TABLE’).

sp_columns can be used to display a table’s columns:

Input ▼

sp_columns customers;

23Learning About Databases and Tables

NOTE: Shortened for Brevity

sp_columns returns lots of data. In the output that follows, I have
truncated the display because the full output would have been far
wider than the pages in this book, likely requiring many lines for
each row.

Output ▼

TABLE_QUALIFIER TABLE_OWNER TABLE_NAME COLUMN_NAME DATA_TYPE TYPE_NAME

crashcourse dbo customers cust_id 4 int identity

crashcourse dbo customers cust_name -8 nchar

crashcourse dbo customers cust_address -8 nchar

crashcourse dbo customers cust_city -8 nchar

crashcourse dbo customers cust_state -8 nchar

crashcourse dbo customers cust_zip -8 nchar

crashcourse dbo customers cust_country -8 nchar

crashcourse dbo customers cust_contact -8 nchar

crashcourse dbo customers cust_email -8 nchar

Analysis ▼

sp_columns requires that a table name be specified (customers in this
example), and returns a row for each field, containing the field name, its
datatype, whether NULL is allowed, key information, default value, and
much more.

24 LESSON 3: Working with SQL Server

NOTE: What Is Identity?

Column cust_id is an identity column. Some table columns need
unique values (for example, order numbers, employee IDs, or, as in
the example just shown, customer IDs). Rather than have to assign
unique values manually each time a row is added (and having to
keep track of what value was last used), SQL Server can automati-
cally assign the next available number for you each time a row is
added to a table. This functionality is known as identity. If it is need-
ed, it must be part of the table definition used when the table is cre-
ated using the CREATE statement. We’ll look at CREATE in Lesson
20, “Creating and Manipulating Tables.”

Lots of other stored procedures are supported, too, including:

. sp_server_info: Used to display extensive server status
information

. sp_spaceused: Used to display the amount of space used (and
unused) by a database

. sp_statistics: Used to display usage statistics pertaining to
database tables

. sp_helpuser: Used to display available user accounts

. sp_helplogins: Used to display user logins and what they have
rights to

It is worthwhile to note that client applications use these same stored pro-
cedures you’ve seen here. Applications that display interactive lists of
databases and tables, that allow for the interactive creation and editing of
tables, that facilitate data entry and editing, or that allow for user account
and rights management, and more, all accomplish what they do using the
same stored procedures that you can execute directly yourself.

Summary
In this lesson, you learned how to connect and log into SQL Server, how
to select databases using USE, and how to introspect SQL databases,
tables, and internals using stored procedures. Armed with this knowledge,
you can now dig into the all-important SELECT statement.

25Summary

This page intentionally left blank

LESSON 4

Retrieving Data

In this lesson, you’ll learn how to use the SELECT statement to retrieve one
or more columns of data from a table.

The SELECT Statement
As explained in Lesson 1, “Understanding SQL,” SQL statements are
made up of plain English terms. These terms are called keywords, and
every SQL statement is made up of one or more keywords. The SQL
statement you’ll probably use most frequently is the SELECT statement. Its
purpose is to retrieve information from one or more tables.

To use SELECT to retrieve table data, at a minimum you must specify two
pieces of information: what you want to select and from where you want
to select it.

NOTE: Make Sure the Right Database Is in Use

In order to follow along with the examples, make sure that you are
using the right database (the one in which you created and populat-
ed the example tables).

Retrieving Individual Columns
We’ll start with a simple SQL SELECT statement, as follows:

Input ▼

SELECT prod_name
FROM products;

Analysis ▼

The previous statement uses the SELECT statement to retrieve a single col-
umn called prod_name from the products table. The desired column name
is specified right after the SELECT keyword, and the FROM keyword speci-
fies the name of the table from which to retrieve the data. The output.
from this statement is shown here:

Output ▼

prod_name

.5 ton anvil
1 ton anvil
2 ton anvil
Detonator
Bird seed
Carrots
Fuses
JetPack 1000
JetPack 2000
Oil can
Safe
Sling
TNT (1 stick)
TNT (5 sticks)

28 LESSON 4: Retrieving Data

NOTE: Unsorted Data

If you tried this query yourself, you might have discovered that the
data was displayed in a different order than shown here. If this is
the case, don’t worry; it is working exactly as it is supposed to. If
query results are not explicitly sorted (we’ll get to that in the next
lesson), data will be returned in no order of any significance. It might
be the order in which the data was added to the table, but it might
not. As long as your query returned the same number of rows, it is
working.

A simple SELECT statement like the one just shown returns all the rows in
a table. Data is not filtered (so as to retrieve a subset of the results), nor is
it sorted. We’ll discuss these topics in the next few lessons.

29Retrieving Multiple Columns

NOTE: Terminating Statements

Multiple SQL statements must be separated by semicolons (the ;
character). SQL Server (like most DBMSs) does not require that a
semicolon be specified after single statements. Of course, you can
always add a semicolon if you wish. It’ll do no harm, even if it isn’t
needed.

NOTE: SQL Statements and Case

It is important to note that SQL statements are not case sensitive.
Therefore, SELECT is the same as select, which is the same as
Select. Many SQL developers find that using uppercase for all SQL
keywords and lowercase for column and table names makes code
easier to read and debug. As a best practice, pick a case convention
and use it consistently.

TIP: Use of White Space

All extra white space within a SQL statement is ignored when that
statement is processed. SQL statements can be specified on one
long line or broken up over many lines. Most SQL developers find
that breaking up statements over multiple lines makes them easier
to read and debug.

Retrieving Multiple Columns
To retrieve multiple columns from a table, the same SELECT statement is
used. The only difference is that multiple column names must be specified
after the SELECT keyword, and each column must be separated by a
comma.

TIP: Take Care with Commas

When selecting multiple columns, be sure to specify a comma
between each column name, but not after the last column name.
Doing so will generate an error.

The following SELECT statement retrieves three columns from the
products table:

Input ▼

SELECT prod_id, prod_name, prod_price
FROM products;

Analysis ▼

Just as in the prior example, this statement uses the SELECT statement to
retrieve data from the products table. In this example, three column
names are specified, each separated by a comma. The output from this
statement is as follows:

Output ▼

prod_id prod_name prod_price
---------- ---------------- ----------
ANV01 .5 ton anvil 5.99
ANV02 1 ton anvil 9.99
ANV03 2 ton anvil 14.99
DTNTR Detonator 13.00
FB Bird seed 10.00
FC Carrots 2.50
FU1 Fuses 3.42
JP1000 JetPack 1000 35.00
JP2000 JetPack 2000 55.00
OL1 Oil can 8.99
SAFE Safe 50.00
SLING Sling 4.49
TNT1 TNT (1 stick) 2.50
TNT2 TNT (5 sticks) 10.00

30 LESSON 4: Retrieving Data

NOTE: Presentation of Data

SQL statements typically return raw, unformatted data. Data format-
ting is a presentation issue, not a retrieval issue. Therefore, presen-
tation (for example, alignment and displaying price values as currency
amounts with the currency symbol and commas) is typically speci-
fied in the application that displays the data. Actual raw retrieved
data (without application-provided formatting) is rarely displayed
as is.

Retrieving All Columns
In addition to being able to specify desired columns (one or more, as
shown previously), you can use SELECT statements to request all columns
without having to list them individually. This is done using the asterisk (*)
wildcard character in lieu of actual column names, as follows:

Input ▼

SELECT *
FROM products;

Analysis ▼

When a wildcard (*) is specified, all the columns in the table are returned.
The columns are in the order in which they appear in the table definition.
However, this cannot be relied on because changes to table schemas
(adding and removing columns, for example) could cause ordering
changes.

31Retrieving All Columns

CAUTION: Using Wildcards

As a rule, you are better off not using the * wildcard unless you real-
ly do need every column in the table. Even though use of wildcards
might save you the time and effort needed to list the desired
columns explicitly, retrieving unnecessary columns usually slows
down the performance of your retrieval and your application.

TIP: Retrieving Unknown Columns

There is one big advantage to using wildcards. Because you do not
explicitly specify column names (because the asterisk retrieves
every column), it is possible to retrieve columns whose names are
unknown.

Retrieving Distinct Rows
As you have seen, SELECT returns all matched rows. But what if you did
not want every occurrence of every value? For example, suppose you want
the vendor ID of all vendors with products in your products table:

Input ▼

SELECT vend_id
FROM products;

Output ▼

vend_id

1001
1001
1001
1003
1003
1003
1002
1005
1005
1002
1003
1003
1003
1003

The SELECT statement returned 14 rows (even though only four vendors
are in that list) because there are 14 products listed in the products table.
So how could you retrieve a list of distinct values?

The solution is to use the DISTINCT keyword, which, as its name implies,
instructs SQL Server to only return distinct values:

Input ▼

SELECT DISTINCT vend_id
FROM products;

32 LESSON 4: Retrieving Data

Analysis ▼

SELECT DISTINCT vend_id tells SQL Server to only return distinct
(unique) vend_id rows, and therefore only four rows are returned, as
shown in the following output. If used, the DISTINCT keyword must be
placed directly in front of the column names.

Output ▼

vend_id

1001
1002
1003
1005

33Limiting Results

CAUTION: Can’t Be Partially DISTINCT

The DISTINCT keyword applies to all columns, not just the one it
precedes. If you were to specify SELECT DISTINCT vend_id,
prod_price, all rows would be retrieved unless both of the specified
columns were distinct.

Limiting Results
SELECT statements return all matched rows, possibly every row in the
specified table. To return just the first row or rows, use the TOP keyword.
Here is an example:

Input ▼

SELECT TOP(5) prod_name
FROM products;

Analysis ▼

The previous statement uses the SELECT statement to retrieve a single col-
umn. TOP(5) instructs SQL Server to return no more than five rows. The
output from this statement is shown next:

Output ▼

prod_name

.5 ton anvil
1 ton anvil
2 ton anvil
Detonator
Bird seed

34 LESSON 4: Retrieving Data

NOTE: SQL Server 6.5 or Later

Support for TOP was introduced into T-SQL in SQL Server 6.5. If you
are using an earlier version of SQL Server, use SET ROWCOUNT
instead, as shown here:
SET ROWCOUNT 5;
SELECTprod_name
FROM products;

SET ROWCOUNT is still supported in newer versions of SQL Server,
but generally use of TOP is preferred.

You can also use TOP to get a percentage of rows by adding the keyword
PERCENT. Here is an example:

Input ▼

SELECT TOP(25) PERCENT prod_name
FROM products;

Analysis ▼

TOP(25) PERCENT instructs SQL Server to return the first 25% of rows in
the products table. The output from this statement is shown here:

Output ▼

prod_name

.5 ton anvil
1 ton anvil
2 ton anvil
Detonator

35Limiting Results

NOTE: When There Aren’t Enough Rows

The number of rows to retrieve as specified in TOP is the maximum
number to retrieve. If there aren’t enough rows (for example, you
specified TOP(20), but there were only 14 rows), SQL Server returns
as many as it can.

New to SQL Server 2005 is support for retrieving a random sampling of
rows by using the TABLESAMPLE keyword. Here are a couple of examples:

Input ▼

SELECT * FROM products
TABLESAMPLE (3 ROWS);

Analysis ▼

TABLESAMPLE allows you to specify how many rows to retrieve, and this
example would retrieve 3 random rows.

Input ▼

SELECT * FROM products
TABLESAMPLE (50 PERCENT);

Analysis ▼

Here TABLESAMPLE is used to specify a percentage of table contents, in this
example 50 PERCENT.

It is worth noting that you may not get the exact number of rows that
you’d expect. Sampling occurs by table page (the internal mechanism
used by SQL Server to actually store data), and the number of rows in a
page can vary.

Using Fully Qualified Table
Names
The SQL examples used thus far have referred to columns by just the col-
umn names. It is also possible to refer to columns using fully qualified
names (using both the table and column names). Look at this example:

Input ▼

SELECT products.prod_name
FROM products;

This SQL statement is functionally identical to the very first one used in
this lesson, but here a fully qualified column name is specified.

Table names, too, may be fully qualified, as shown here:

Input ▼

SELECT products.prod_name
FROM crashcourse.dbo.products;

Once again, this statement is functionally identical to the one just used
(assuming, of course, that the products table is indeed in the
crashcourse database). But notice the extra dbo in the table name. A fully
qualified table name is made up of a database name, the table owner
name, and the table name. The default owner will always be dbo (as in
database owner), and therefore crashcourse.dbo.products is the fully
qualified name for table products in the crashcourse database.

In certain situations fully qualified names are required, as you will see in
later lessons. For now, it is worth noting this syntax so you’ll know what
it is if you run across it.

Summary
In this lesson, you learned how to use the SQL SELECT statement to
retrieve a single table column, multiple table columns, and all table
columns. Next you’ll learn how to sort the retrieved data.

36 LESSON 4: Retrieving Data

LESSON 5

Sorting Retrieved Data

In this lesson, you will learn how to use the SELECT statement’s ORDER BY
clause to sort retrieved data as needed.

Sorting Data
As you learned in the last lesson, the following SQL statement returns a
single column from a database table. But look at the output. The data
appears to be displayed in no particular order at all.

Input ▼

SELECT prod_name
FROM products;

Output ▼

prod_name

.5 ton anvil
1 ton anvil
2 ton anvil
Detonator
Bird seed
Carrots
Fuses
JetPack 1000
JetPack 2000
Oil can
Safe
Sling
TNT (1 stick)
TNT (5 sticks)

Actually, the retrieved data is not displayed in a mere random order. If
unsorted, data is typically displayed in the order in which it appears in the
underlying tables. This could be the order in which the data was added to
the tables initially. However, if data was subsequently updated or deleted,
the order is affected by how SQL Server reuses reclaimed storage space.
The end result is that you cannot (and should not) rely on the sort order if
you do not explicitly control it. Relational database design theory states
that the sequence of retrieved data cannot be assumed to have significance
if ordering is not explicitly specified.

38 LESSON 5: Sorting Retrieved Data

PLAIN ENGLISH: Clause

SQL statements are made up of clauses, some required and some
optional. A clause usually consists of a keyword and supplied data.
An example of this is the SELECT statement’s FROM clause, which
you saw in the last lesson.

To explicitly sort data retrieved using a SELECT statement, you use the
ORDER BY clause. ORDER BY takes the name of one or more columns by
which to sort the output. Look at the following example:

Input ▼

SELECT prod_name
FROM products
ORDER BY prod_name;

Analysis ▼

This statement is identical to the earlier statement, except it also specifies
an ORDER BY clause instructing SQL Server to sort the data alphabetically
by the prod_name column. The results are as follows:

Output ▼

prod_name

.5 ton anvil
1 ton anvil
2 ton anvil

Bird seed
Carrots
Detonator
Fuses
JetPack 1000
JetPack 2000
Oil can
Safe
Sling
TNT (1 stick)
TNT (5 sticks)

39Sorting by Multiple Columns

TIP: Sorting by Nonselected Columns

More often than not, the columns used in an ORDER BY clause are
ones that were selected for display. However, this is actually not
required, and it is perfectly legal to sort data by a column that is not
retrieved.

Sorting by Multiple Columns
It is often necessary to sort data by more than one column. For example,
if you are displaying an employee list, you might want to display it sorted
by last name and first name (first sort by last name, and then within each
last name sort by first name). This would be useful if multiple employees
have the same last name.

To sort by multiple columns, simply specify the column names separated
by commas (just as you do when you are selecting multiple columns).

The following code retrieves three columns and sorts the results by two of
them, first by price and then by name.

Input ▼

SELECT prod_id, prod_price, prod_name
FROM products
ORDER BY prod_price, prod_name;

Output ▼

prod_id prod_price prod_name
---------- --------------------- --------------
FC 2.50 Carrots
TNT1 2.50 TNT (1 stick)
FU1 3.42 Fuses
SLING 4.49 Sling
ANV01 5.99 .5 ton anvil
OL1 8.99 Oil can
ANV02 9.99 1 ton anvil
FB 10.00 Bird seed
TNT2 10.00 TNT (5 sticks)
DTNTR 13.00 Detonator
ANV03 14.99 2 ton anvil
JP1000 35.00 JetPack 1000
SAFE 50.00 Safe
JP2000 55.00 JetPack 2000

It is important to understand that when you are sorting by multiple
columns, the sort sequence is exactly as specified. In other words, using
the output in the previous example, the products are sorted by the
prod_name column only when multiple rows have the same prod_price
value. If all the values in the prod_price column had been unique, no
data would have been sorted by prod_name.

Specifying Sort Direction
Data sorting is not limited to ascending sort orders (from A to Z).
Although this is the default sort order, the ORDER BY clause can also be
used to sort in descending order (from Z to A). To sort by descending
order, you must specify the keyword DESC.

The following example sorts the products by price in descending order
(most expensive first):

Input ▼

SELECT prod_id, prod_price, prod_name
FROM products
ORDER BY prod_price DESC;

40 LESSON 5: Sorting Retrieved Data

Output ▼

prod_id prod_price prod_name
---------- --------------------- --------------
JP2000 55.00 JetPack 2000
SAFE 50.00 Safe
JP1000 35.00 JetPack 1000
ANV03 14.99 2 ton anvil
DTNTR 13.00 Detonator
TNT2 10.00 TNT (5 sticks)
FB 10.00 Bird seed
ANV02 9.99 1 ton anvil
OL1 8.99 Oil can
ANV01 5.99 .5 ton anvil
SLING 4.49 Sling
FU1 3.42 Fuses
FC 2.50 Carrots
TNT1 2.50 TNT (1 stick)

But what if you were to sort by multiple columns, how would that impact
sort direction? The following example sorts the products in descending
order (most expensive first), plus provides the product name:

Input ▼

SELECT prod_id, prod_price, prod_name
FROM products
ORDER BY prod_price DESC, prod_name;

Output ▼

prod_id prod_price prod_name
---------- --------------------- --------------
JP2000 55.00 JetPack 2000
SAFE 50.00 Safe
JP1000 35.00 JetPack 1000
ANV03 14.99 2 ton anvil
DTNTR 13.00 Detonator
FB 10.00 Bird seed
TNT2 10.00 TNT (5 sticks)
ANV02 9.99 1 ton anvil
OL1 8.99 Oil can
ANV01 5.99 .5 ton anvil
SLING 4.49 Sling
FU1 3.42 Fuses
FC 2.50 Carrots
TNT1 2.50 TNT (1 stick)

41Specifying Sort Direction

Analysis ▼

The DESC keyword only applies to the column name that directly precedes
it. In the previous example, DESC was specified for the prod_price col-
umn, but not for the prod_name column. Therefore, the prod_price col-
umn is sorted in descending order, but the prod_name column (within each
price) is still sorted in standard ascending order.

42 LESSON 5: Sorting Retrieved Data

TIP: Sorting Descending on Multiple Columns

If you want to sort in descending order on multiple columns, be sure
each column has its own DESC keyword.

The opposite of DESC is ASC (for ascending), which may be specified to
sort in ascending order. In practice, however, ASC is not generally used
because ascending order is the default sequence (and is assumed if neither
ASC nor DESC is specified).

TIP: Case Sensitivity and Sort Orders

When you are sorting textual data, is A the same as a? And does a
come before B or after Z? These are not theoretical questions, and
the answers depend on how the database is set up.

In dictionary sort order, A is treated the same as a, and that is the
default behavior in SQL Server (and indeed most DBMSs). However,
administrators can change this behavior if needed. (If your database
contains lots of foreign language characters, this might become
necessary.)

The key here is that, if you do need an alternate sort order, you can-
not accomplish it with a simple ORDER BY clause. You must contact
your database administrator.

Using a combination of ORDER BY and TOP, it is possible to find the high-
est or lowest value in a column. The following example demonstrates how
to find the value of the most expensive item:

Input ▼

SELECT TOP(1) prod_price
FROM products
ORDER BY prod_price DESC;

Output ▼

prod_price

55.00

Analysis ▼

prod_price DESC ensures that rows are retrieved from most to least
expensive, and TOP(1) tells SQL Server to just return one row.

43Summary

CAUTION: Position of the ORDER BY Clause

When specifying an ORDER BY clause, be sure that it is after the
FROM clause. Using clauses out of order will generate an error
message.

Summary
In this lesson, you learned how to sort retrieved data using the SELECT
statement’s ORDER BY clause. This clause, which must be the last in the
SELECT statement, can be used to sort data on one or more columns, as
needed.

This page intentionally left blank

LESSON 6

Filtering Data

In this lesson, you will learn how to use the SELECT statement’s WHERE
clause to specify search conditions.

Using the WHERE Clause
Database tables usually contain large amounts of data, and you seldom
need to retrieve all the rows in a table. More often than not, you’ll want to
extract a subset of the table’s data as needed for specific operations or
reports. Retrieving just the data you want involves specifying search crite-
ria, also known as a filter condition.

Within a SELECT statement, you filter data by specifying search criteria in
the WHERE clause. The WHERE clause is specified right after the table name
(using the FROM clause) as follows:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE prod_price = 2.50;

Analysis ▼

This statement retrieves two columns from the products table, but instead
of returning all rows, it returns only rows with a prod_price value of
2.50, as shown here:

Output ▼

prod_name prod_price
-------------- ----------
Carrots 2.50
TNT (1 stick) 2.50

This example uses a simple equality test: It checks to see if a column has
a specified value, and it filters the data accordingly. However, T-SQL
enables you to do more than just test for equality.

46 LESSON 6: Filtering Data

TIP: SQL Versus Application Filtering

Data can also be filtered at the application level. To do this, the SQL
SELECT statement retrieves more data than is actually required for
the client application, and the client code loops through the returned
data to extract just the needed rows.

As a rule, this practice is strongly discouraged. DBMSs are opti-
mized to perform filtering quickly and efficiently. Making the client
application (or development language) do the database’s job dramat-
ically impacts application performance and creates applications that
cannot scale properly. In addition, if data is filtered at the client, the
server has to send unneeded data across the network connections,
resulting in a waste of network bandwidth resources.

CAUTION: WHERE Clause Position

When using both ORDER BY and WHERE clauses, make sure ORDER
BY comes after WHERE; otherwise, an error will be generated. (See
Lesson 5, “Sorting Retrieved Data,” for more information on using
ORDER BY.)

The WHERE Clause Operators
The first WHERE clause we looked at tests for equality, determining if a col-
umn contains a specific value. T-SQL supports a whole range of compari-
son operators, some of which are listed in Table 6.1.

TABLE 6.1 WHERE Clause Operators

Operator Description

= Equality

<> Nonequality

!= Nonequality

< Less than

<= Less than or equal to

!< Not less than

> Greater than

>= Greater than or equal to

!> Not greater than

BETWEEN Between two specified values

IS NULL Is a NULL value

Checking Against a Single Value
You have already seen an example of testing for equality. Here’s one
more:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE prod_name = ‘fuses’;

Output ▼

prod_name prod_price
----------- ----------
Fuses 3.42

Analysis ▼

Checking for WHERE prod_name = ‘fuses’ returned a single row with a
value of Fuses. By default, T-SQL is not case sensitive when performing
matches, and therefore fuses and Fuses matched.

Now we’ll look at a few examples to demonstrate the use of other operators.

47The WHERE Clause Operators

This first example lists all products that cost less than 10:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE prod_price < 10;

Output ▼

prod_name prod_price
-------------- ----------
.5 ton anvil 5.99
1 ton anvil 9.99
Carrots 2.50
Fuses 3.42
Oil can 8.99
Sling 4.49
TNT (1 stick) 2.50

This next statement retrieves all products costing 10 or less (resulting in
two additional matches):

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE prod_price <= 10;

Output ▼

prod_name prod_price
-------------- ----------
.5 ton anvil 5.99
1 ton anvil 9.99
Bird seed 10.00
Carrots 2.50
Fuses 3.42
Oil can 8.99
Sling 4.49
TNT (1 stick) 2.50
TNT (5 sticks) 10.00

48 LESSON 6: Filtering Data

Checking for Nonmatches
This example lists all products not made by vendor 1003:

Input ▼

SELECT vend_id, prod_name
FROM products
WHERE vend_id <> 1003;

Output ▼

vend_id prod_name
----------- ------------
1001 .5 ton anvil
1001 1 ton anvil
1001 2 ton anvil
1002 Fuses
1005 JetPack 1000
1005 JetPack 2000
1002 Oil can

49The WHERE Clause Operators

TIP: When to Use Quotes

If you look closely at the conditions used in the examples’ WHERE
clauses, you will notice that some values are enclosed within single
quotes (such as ‘fuses’, used previously) and others are not. The
single quotes are used to delimit strings. If you are comparing a
value against a column that is a string datatype, the delimiting
quotes are required. Quotes are not used to delimit values used
with numeric columns.

The following is the same example, except this one uses the != operator
instead of <>:

Input ▼

SELECT vend_id, prod_name
FROM products
WHERE vend_id != 1003;

Checking for a Range of Values
To check for a range of values, you can use the BETWEEN operator. Its syn-
tax is a little different from other WHERE clause operators because it
requires two values: the beginning and end of the range. The BETWEEN
operator can be used, for example, to check for all products that cost
between 5 and 10 or for all dates that fall between specified start and end
dates.

The following example demonstrates the use of the BETWEEN operator by
retrieving all products with a price between 5 and 10:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE prod_price BETWEEN 5 AND 10;

Output ▼

prod_name prod_price
---------------- ----------
.5 ton anvil 5.99
1 ton anvil 9.99
Bird seed 10.00
Oil can 8.99
TNT (5 sticks) 10.00

Analysis ▼

As shown in this example, when BETWEEN is used, two values must be
specified, the low end and high end of the desired range. The two values
must also be separated by the AND keyword. BETWEEN matches all the val-
ues in the range, including the specified range start and end values.

50 LESSON 6: Filtering Data

51The WHERE Clause Operators

PLAIN ENGLISH: NULL

No value, as opposed to a field containing 0, an empty string, or just
spaces.

The SELECT statement has a special WHERE clause that can be used to check
for columns with NULL values, the IS NULL clause. The syntax looks like
this:

Input ▼

SELECT prod_name
FROM products
WHERE prod_price IS NULL;

This statement returns a list of all products that have no price (an empty
prod_price field, not a price of 0), and because there are none, no data is
returned. The customers table, however, does contain columns with NULL
values; the cust_email column contains NULL if a customer has no email
address on file:

Input ▼

SELECT cust_id
FROM customers
WHERE cust_email IS NULL;

Output ▼

cust_id

10002
10005

Checking for No Value
When a table is created, the table designer can specify whether individual
columns can contain no value. When a column contains no value, it is
said to contain a NULL value.

52 LESSON 6: Filtering Data

CAUTION: NULL and Nonmatches

You might expect that when you filter to select all rows that do not
have a particular value, rows with a NULL will be returned. But they
will not. Because of the special meaning of unknown, the database
does not know whether these rows match, so they are not returned
when filtering for matches or when filtering for nonmatches.

When filtering data, make sure to verify that the rows with a NULL in
the filtered column are really present in the returned data.

Summary
In this lesson, you learned how to filter returned data using the SELECT
statement’s WHERE clause. You learned how to test for equality, nonequali-
ty, greater than and less than, value ranges, and NULL values.

LESSON 7

Advanced Data
Filtering

In this lesson, you’ll learn how to combine WHERE clauses to create power-
ful and sophisticated search conditions. You’ll also learn how to use the
NOT and IN operators.

Combining WHERE Clauses
All the WHERE clauses introduced in Lesson 6, “Filtering Data,” filter data
using a single criteria. For a greater degree of filter control, T-SQL allows
you to specify multiple WHERE clauses. These clauses may be used in two
ways: as AND clauses or as OR clauses.

PLAIN ENGLISH: Operator

A special keyword used to join or change clauses within a WHERE
clause. Also known as a logical operator.

Using the AND Operator
To filter by more than one column, you use the AND operator to append
conditions to your WHERE clause. The following code demonstrates this:

Input ▼

SELECT prod_id, prod_price, prod_name
FROM products
WHERE vend_id = 1003 AND prod_price <= 10;

Analysis ▼

The preceding SQL statement retrieves the product name and price for all
products made by vendor 1003 as long as the price is 10 or less. The
WHERE clause in this SELECT statement is made up of two conditions, and
the keyword AND is used to join them. AND instructs the SQL Server to
return only rows that meet all the conditions specified. If a product is
made by vendor 1003 but it costs more than 10, it is not retrieved.
Similarly, products that cost less than 10 that are made by a vendor other
than the one specified are not retrieved. The output generated by this SQL
statement is as follows:

Output ▼

prod_id prod_price prod_name
---------- --------------------- ---------------
FB 10.00 Bird seed
FC 2.50 Carrots
SLING 4.49 Sling
TNT1 2.50 TNT (1 stick)
TNT2 10.00 TNT (5 sticks)

54 LESSON 7: Advanced Data Filtering

PLAIN ENGLISH: AND

A keyword used in a WHERE clause to specify that only rows matching
all the specified conditions should be retrieved.

The current example contains a single AND clause and is thus made up of
two filter conditions. Additional filter conditions can be used as well, each
seperated by an AND keyword.

Using the OR Operator
As just seen, AND requires that both conditions be met for a row to be
retrieved. The OR operator instructs SQL Server to retrieve rows that
match either condition, so if one matches and one does not, the row
would still be retrieved.

Look at the following SELECT statement:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE vend_id = 1002 OR vend_id = 1003;

Analysis ▼

This SQL statement retrieves the product name and price for any products
made by either of the two specified vendors. The OR operator tells the
DBMS to match either condition, not necessarily both. If an AND operator
would have been used here, no data would be returned. (It would have
created a WHERE clause that could never be matched.) The output generated
by this SQL statement is as follows:

Output ▼

prod_name prod_price
--------------- ----------
Detonator 13.00
Bird seed 10.00
Carrots 2.50
Fuses 3.42
Oil can 8.99
Safe 50.00
Sling 4.49
TNT (1 stick) 2.50
TNT (5 sticks) 10.00

55Combining WHERE Clauses

PLAIN ENGLISH: OR

A keyword used in a WHERE clause to specify that any rows matching
either of the specified conditions should be retrieved.

Understanding Order of Evaluation
WHERE clauses can contain any number of AND and OR operators.
Combining the two enables you to perform sophisticated and complex
filtering.

However, combining AND and OR operators presents an interesting prob-
lem. To demonstrate this, let’s look at an example. Suppose you need a
list of all products costing 10 or more made by vendors 1002 and 1003.
The following SELECT statement uses a combination of AND and OR opera-
tors to build a WHERE clause:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE vend_id = 1002 OR vend_id = 1003 AND prod_price >= 10;

Output ▼

prod_name prod_price
---------------- ----------
Detonator 13.00
Bird seed 10.00
Fuses 3.42
Oil can 8.99
Safe 50.00
TNT (5 sticks) 10.00

Analysis ▼

Look at the listed results. Two of the rows returned have prices less than
10; so, obviously, the rows were not filtered as intended. Why did this
happen? The answer is the order of evaluation. T-SQL (like most lan-
guages) processes AND operators before OR operators. When SQL Server
sees the preceding WHERE clause, it reads products made by vendor 1002
regardless of price, and any products costing 10 or more made by vendor
1003. In other words, because AND ranks higher in the order of evaluation,
the wrong operators were joined together.

The solution to this problem is to use parentheses to explicitly group relat-
ed operators. Take a look at the following SELECT statement and output:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE (vend_id = 1002 OR vend_id = 1003) AND prod_price >= 10;

56 LESSON 7: Advanced Data Filtering

Output ▼

prod_name prod_price
---------------- ----------
Detonator 13.00
Bird seed 10.00
Safe 50.00
TNT (5 sticks) 10.00

Analysis ▼

The only difference between this SELECT statement and the earlier one is
that, in this statement, the first two WHERE clause conditions are enclosed
within parentheses. Because parentheses have a higher order of evaluation
than either AND or OR operators, SQL Server first filters the OR condition
within those parentheses. The SQL statement then becomes any products
made by either vendor 1002 or vendor 1003 costing 10 or greater, which
is exactly what you want.

57Using the IN Operator

TIP: Using Parentheses in WHERE Clauses

Whenever you write WHERE clauses that use both AND and OR opera-
tors, use parentheses to explicitly group the operators. Don’t ever
rely on the default evaluation order, even if it is exactly what you
want. There is no downside to using parentheses, and you are
always better off eliminating any ambiguity.

Using the IN Operator
Parentheses have another very different use in WHERE clauses. The IN oper-
ator is used to specify a range of conditions, any of which can be
matched. IN takes a comma-delimited list of valid values, all enclosed
within parentheses. The following example demonstrates this:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE vend_id IN (1002,1003)
ORDER BY prod_name;

Output ▼

prod_name prod_price
---------------- ----------
Bird seed 10.00
Carrots 2.50
Detonator 13.00
Fuses 3.42
Oil can 8.99
Safe 50.00
Sling 4.49
TNT (1 stick) 2.50
TNT (5 sticks) 10.00

Analysis ▼

The SELECT statement retrieves all products made by vendor 1002 and
vendor 1003. The IN operator is followed by a comma-delimited list of
valid values, and the entire list must be enclosed within parentheses.

If you are thinking that the IN operator accomplishes the same goal as OR,
you are right. The following SQL statement accomplishes the exact same
thing as the previous example:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE vend_id = 1002 OR vend_id = 1003
ORDER BY prod_name;

Output ▼

prod_name prod_price
---------------- ----------
Bird seed 10.00
Carrots 2.50
Detonator 13.00
Fuses 3.42
Oil can 8.99
Safe 50.00
Sling 4.49
TNT (1 stick) 2.50
TNT (5 sticks) 10.00

58 LESSON 7: Advanced Data Filtering

Why use the IN operator? Here are the advantages:

. When you are working with long lists of valid options, the IN
operator syntax is far cleaner and easier to read.

. The order of evaluation is easier to manage when IN is used
(because fewer operators are used).

. IN operators almost always execute more quickly than lists of OR
operators.

. The biggest advantage of IN is that the IN operator can contain
another SELECT statement, enabling you to build highly dynamic
WHERE clauses. You’ll look at this in detail in Lesson 13,
“Working with Subqueries.”

59Using the NOT Operator

PLAIN ENGLISH: IN

A keyword used in a WHERE clause to specify a list of values to be
matched using an OR comparison.

Using the NOT Operator
The WHERE clause’s NOT operator has one function and one function only:
NOT negates whatever condition comes next.

PLAIN ENGLISH: NOT

A keyword used in a WHERE clause to negate a condition.

The following example demonstrates the use of NOT. To list the products
made by all vendors except vendors 1002 and 1003, you can use the
following:

Input ▼

SELECT prod_name, prod_price
FROM products
WHERE vend_id NOT IN (1002,1003)
ORDER BY prod_name;

Output ▼

prod_name prod_price
--------------- ----------
.5 ton anvil 5.99
1 ton anvil 9.99
2 ton anvil 14.99
JetPack 1000 35.00
JetPack 2000 55.00

Analysis ▼

The NOT here negates the condition that follows it; so instead of matching
vend_id to 1002 or 1003, SQL Server matches vend_id to anything that is
not 1002 or 1003.

So why use NOT? Well, for simple WHERE clauses, there really is no advan-
tage to using NOT. NOT is useful in more complex clauses. For example,
using NOT in conjunction with an IN operator makes it simple to find all
rows that do not match a list of criteria.

Summary
This lesson picked up where the last lesson left off and taught you how to
combine WHERE clauses with the AND and OR operators. You also learned
how to explicitly manage the order of evaluation and how to use the IN
and NOT operators.

60 LESSON 7: Advanced Data Filtering

LESSON 8

Using Wildcard
Filtering

In this lesson, you’ll learn what wildcards are, how they are used, and
how to perform wildcard searches using the LIKE operator for sophisticat-
ed filtering of retrieved data.

Using the LIKE Operator
All the previous operators we studied filter against known values. Be it
matching one or more values, testing for greater-than or less-than known
values, or checking a range of values, the common denominator is that the
values used in the filtering are known. But filtering data that way does not
always work. For example, how could you search for all products that
contain the text anvil within the product name? That cannot be done with
simple comparison operators; that’s a job for wildcard searching. Using
wildcards, you can create search patterns that can be compared against
your data. In this example, if you want to find all products that contain the
words anvil, you could construct a wildcard search pattern enabling you to
find that anvil text anywhere within a product name.

PLAIN ENGLISH: Wildcards

Special characters used to match parts of a value.

PLAIN ENGLISH: Search pattern

A search condition made up of literal text, wildcard characters, or
any combination of the two.

The wildcards themselves are actually characters that have special mean-
ings within SQL WHERE clauses, and SQL supports several wildcard types.

To use wildcards in search clauses, you must use the LIKE operator. LIKE
instructs SQL Server that the following search pattern is to be compared
using a wildcard match rather than a straight equality match.

62 LESSON 8: Using Wildcard Filtering

NOTE: Predicates

When is an operator not an operator? When it is a predicate.
Technically, LIKE is a predicate, not an operator. The end result is
the same; just be aware of this term in case you run across it in the
SQL Server documentation.

The Percent Sign (%) Wildcard
The most frequently used wildcard is the percent sign (%). Within a search
string, % means match any number of occurrences of any character. For
example, to find all products that start with the word jet, you can issue
the following SELECT statement:

Input ▼

SELECT prod_id, prod_name
FROM products
WHERE prod_name LIKE ‘jet%’;

Output ▼

prod_id prod_name
---------- ---------------
JP1000 JetPack 1000
JP2000 JetPack 2000

Analysis ▼

This example uses a search pattern of ‘jet%’. When this clause is evaluat-
ed, any value that starts with jet is retrieved. The % tells SQL Server to
accept any characters after the word jet, regardless of how many charac-
ters there are.

63Using the LIKE Operator

NOTE: Case sensitivity

Depending on how SQL Server is configured, searches might be
case sensitive, in which case ‘jet%’ would not match JetPack
1000. But the default behavior on most SQL Server installations is
case-insensitive.

Wildcards can be used anywhere within the search pattern, and multiple
wildcards can be used as well. The following example uses two wildcards,
one at either end of the pattern:

Input ▼

SELECT prod_id, prod_name
FROM products
WHERE prod_name LIKE ‘%anvil%’;

Output ▼

prod_id prod_name
---------- --------------
ANV01 .5 ton anvil
ANV02 1 ton anvil
ANV03 2 ton anvil

Analysis ▼

The search pattern ‘%anvil%’ means match any value that contains the
text anvil anywhere within it, regardless of any characters before or after
that text.

Wildcards can also be used in the middle of a search pattern, although that
is rarely useful. The following example finds all products that begin with
an s and end with an e:

Input ▼

SELECT prod_name
FROM products
WHERE prod_name LIKE ‘s%e’;

It is important to note that, in addition to matching one or more charac-
ters, % also matches zero characters. % represents zero, one, or more char-
acters at the specified location in the search pattern.

64 LESSON 8: Using Wildcard Filtering

NOTE: Watch for Trailing Spaces

Trailing spaces can interfere with wildcard matching. For example, if
any of the instances of anvil had been saved with one or more
spaces after the word, the clause WHERE prod_name LIKE
‘%anvil’ would not have matched them because of the additional
characters after the final l. One simple solution to this problem is
to always append a final % to the search pattern. A better solution is
to trim the spaces using functions, as discussed in Lesson 10,
“Using Data Manipulation Functions.”

CAUTION: Watch for NULL

Although it may seem that the % wildcard matches anything, there is
one exception, NULL. Not even the clause WHERE prod_name LIKE
‘%’ will match a row with the value NULL as the product name.

The Underscore (_) Wildcard
Another useful wildcard is the underscore (_). The underscore is used just
like %, but instead of matching multiple characters, the underscore match-
es just a single character.

Take a look at this example:

Input ▼

SELECT prod_id, prod_name
FROM products
WHERE prod_name LIKE ‘_ ton anvil%’;

Output ▼

prod_id prod_name
---------- --------------
ANV02 1 ton anvil
ANV03 2 ton anvil

Analysis ▼

The search pattern used in this WHERE clause specifies a wildcard followed
by literal text. The results shown are the only rows that match the search
pattern: The underscore matches 1 in the first row and 2 in the second
row. The .5 ton anvil product did not match because the search pattern
matched a single character, not two. By contrast, the following SELECT
statement uses the % wildcard and returns three matching products:

Input ▼

SELECT prod_id, prod_name
FROM products
WHERE prod_name LIKE ‘% ton anvil%’;

Output ▼

prod_id prod_name
---------- --------------
ANV01 .5 ton anvil
ANV02 1 ton anvil
ANV03 2 ton anvil

Unlike %, which can match zero characters, _ always matches one charac-
ter, no more and no less.

The Brackets ([]) Wildcard
The brackets ([]) wildcard is used to specify a set of characters, any one
of which must match a character in the specified position (the location of
the wildcard).

For example, to find all contacts whose names begin with the letter J or
the letter M, you can do the following:

Input ▼

SELECT cust_contact
FROM customers
WHERE cust_contact LIKE ‘[EJ]%’
ORDER BY cust_contact;

65Using the LIKE Operator

Output ▼

cust_contact

E Fudd
Jerry Mouse
Jim Jones

Analysis ▼

The WHERE clause in this statement is ‘[EJ]%’. This search pattern uses
two different wildcards. The [EJ] matches any contact name that begins
with either of the letters within the brackets, and it also matches only a
single character. Therefore, any names longer than one character do not
match. The % wildcard after the [EJ] matches any number of characters
after the first character, thus returning the desired results.

This wildcard can be negated by prefixing the characters with ^ (the carat
character). For example, the following matches any contact name that
does not begin with the letter E or the letter J (the opposite of the previ-
ous example):

Input ▼

SELECT cust_contact
FROM customers
WHERE cust_contact LIKE ‘[^EJ]%’
ORDER BY cust_contact;

Of course, you can accomplish the same result using the NOT operator. The
only advantage of ^ is that it can simplify the syntax if you are using mul-
tiple WHERE clauses:

Input ▼

SELECT cust_contact
FROM Customers
WHERE NOT cust_contact LIKE ‘[EJ]%’
ORDER BY cust_contact;

66 LESSON 8: Using Wildcard Filtering

Tips for Using Wildcards
As you can see, T-SQL’s wildcards are extremely powerful. But that
power comes with a price: Wildcard searches typically take far longer to
process than any other search types discussed previously. Here are some
tips to keep in mind when using wildcards:

. Don’t overuse wildcards. If another search operator will do, use
it instead.

. When you do use wildcards, try not to use them at the beginning
of the search pattern unless absolutely necessary. Search patterns
that begin with wildcards are the slowest to process.

. Pay careful attention to the placement of the wildcard symbols. If
they are misplaced, you might not return the data you intended.

Having said that, wildcards are an important and useful search tool, and
one that you will use frequently.

Summary
In this lesson, you learned what wildcards are and how to use SQL wild-
cards within your WHERE clauses. You also learned that wildcards should
be used carefully and never overused.

67Summary

This page intentionally left blank

LESSON 9

Creating Calculated
Fields

In this lesson, you will learn what calculated fields are, how to create
them, and how to use aliases to refer to them from within your
application.

Understanding Calculated Fields
Data stored within a database’s tables is often not available in the exact
format needed by your applications. Here are some examples:

. You need to display a field containing the name of a company
along with the company’s location, but that information is stored
in separated table columns.

. City, state, and ZIP Code are stored in separate columns (as they
should be), but your mailing label printing program needs them
retrieved as one correctly formatted field.

. Column data is in mixed upper- and lowercase, and your report
needs all data presented in uppercase.

. An order items table stores item price and quantity but not the
expanded price (price multiplied by quantity) of each item. To
print invoices, you need that expanded price.

. You need total, averages, or other calculations based on table
data.

In each of these examples, the data stored in the table is not exactly what
your application needs. Rather than retrieve the data as it is and then
reformat it within your client application or report, what you really want
is to retrieve converted, calculated, or reformatted data directly from the
database.

This is where calculated fields come in. Unlike all the columns we
retrieved in the lessons thus far, calculated fields don’t actually exist in
database tables. Rather, a calculated field is created on the fly within a
SQL SELECT statement.

70 LESSON 9: Creating Calculated Fields

PLAIN ENGLISH: Field

Essentially means the same thing as column and often is used inter-
changeably, although database columns are typically called columns
and the term fields is normally used in conjunction with calculated
fields.

It is important to note that only the database knows which columns in a
SELECT statement are actual table columns and which are calculated fields.
From the perspective of a client (for example, your application), a calcu-
lated field’s data is returned in the same way as data from any other
column.

TIP: Client Versus Server Formatting

Many of the conversions and reformatting that can be performed
within SQL statements can also be performed directly in your client
application. However, as a rule, it is far quicker to perform these
operations on the database server than it is to perform them within
the client because Database Management Systems (DBMSs) are
built to perform this type of processing quickly and efficiently.

Concatenating Fields
To demonstrate working with calculated fields, let’s start with a simple
example, creating a title made up of two columns.

The vendors table contains vendor name and address information.
Imagine you are generating a vendor report and need to list the vendor
location as part of the vendor name in the format name (location).

The report wants a single value, and the data in the table is stored in two
columns: vend_name and vend_country. In addition, you need to surround
vend_country with parentheses, and those are definitely not stored in the
database table. The SELECT statement that returns the vendor names and
locations is simple enough, but how would you create this combined
value?

71Concatenating Fields

PLAIN ENGLISH: Concatenate

Joining values together (by appending them to each other) to form a
single long value.

The solution is to concatenate the two columns. In T-SQL SELECT state-
ments, you can concatenate columns using the + operator.

Input ▼

SELECT vend_name + ‘ (‘ + vend_country + ‘)’
FROM vendors
ORDER BY vend_name;

Output ▼

--
ACME (USA)
Anvils R Us (USA)
Furball Inc. (USA)
Jet Set (England)
Jouets Et Ours (France)
LT Supplies (USA)

Analysis ▼

The + operator concatenates strings, appending them to each other to cre-
ate one bigger string. The previous SELECT statements concatenate four
elements:

. The name stored in the vend_name column

. A string containing a space and an opening parenthesis

. The state stored in the vend_country column

. A string containing the closing parenthesis

As you can see in the output shown previously, the SELECT statement
returns a single column (a calculated field) containing all four of these
elements as one unit. However, because of how SQL Server stores data in
fixed-length columns, the retrieved columns were all padded with spaces
to their maximum length. As such, the new calculated field contains extra-
neous spaces and is not exactly what we were looking for.

Back in Lesson 8, “Using Wildcard Filtering,” I mentioned the need to
trim data so as to remove any trailing spaces. This can be done using the
T-SQL RTrim() function, as follows:

Input ▼

SELECT RTrim(vend_name) + ‘ (‘ + RTrim(vend_country) + ‘)’
FROM vendors
ORDER BY vend_name;

Output ▼

--
ACME (USA)
Anvils R Us (USA)
Furball Inc. (USA)
Jet Set (England)
Jouets Et Ours (France)
LT Supplies (USA)

Analysis ▼

The RTrim() function trims all spaces from the right of a value. By using
RTrim(), you can trim the individual columns properly.

72 LESSON 9: Creating Calculated Fields

73Concatenating Fields

NOTE: The LTrim() Function

In addition to RTrim() (which, as you’ve just seen, trims the right
side of a string), T-SQL also supports the use of LTrim() (which
trims the left side of a string). To trim both the right and left sides of
a string, use both functions, as in RTrim(LTrim(vend_name)).

Using Aliases
The SELECT statement used to concatenate the address field works well, as
shown in the previous output. But what is the name of this new calculated
column? Well, the truth is, it has no name; it is simply a value. Although
this can be fine if you are just looking at the results in a SQL query tool,
an unnamed column cannot be used within a client application because
the client has no way to refer to that column.

To solve this problem, SQL supports column aliases. An alias is just that,
an alternative name for a field or value. Aliases are assigned with the AS
keyword. Take a look at the following SELECT statement:

Input ▼

SELECT RTrim(vend_name) + ‘ (‘ + RTrim(vend_country) + ‘)’ AS
➥vend_title
FROM vendors
ORDER BY vend_name;

Output ▼

vend_title
--
ACME (USA)
Anvils R Us (USA)
Furball Inc. (USA)
Jet Set (England)
Jouets Et Ours (France)
LT Supplies (USA)

Analysis ▼

The SELECT statement itself is the same as the one used in the previous
code snippet, except that here the calculated field is followed by the text
AS vend_title. This instructs SQL Server to create a calculated field
named vend_title containing the results of the specified calculation. As
you can see in the output, the results are the same as before, but the col-
umn is now named vend_title and any client application can refer to this
column by name, just as it would any actual table column.

74 LESSON 9: Creating Calculated Fields

TIP: AS Is Optional

Unlike in most other SQL implementations, in T-SQL the AS keyword
is actually optional. As such, SELECT vend_name AS VendName and
SELECT vend_name VendName accomplish the same thing. In prac-
tice, it is a good idea to always specify the AS keyword (so that you’ll
be used to using it when you find yourself using another DBMS).

NOTE: Derived Columns

Aliases are also sometimes referred to as derived columns, so
regardless of the term you run across, the meaning is the same.

Aliases have other uses, too. Some common uses include renaming a col-
umn if the real table column name contains illegal characters (for exam-
ple, spaces) and expanding column names if the original names are either
ambiguous or easily misread. For example, if a table contains a column
named Last Name (with a space in the column name), you’d have a very
hard time using that column in SQL statements and in your application.
The solution would be to use an alias, like this:

SELECT [Last Name] AS LastName

Here, [and] are used to delimit the column name, and Last Name would
then be aliased as LastName.

Performing Mathematical
Calculations
Another frequent use for calculated fields is performing mathematical cal-
culations on retrieved data. Let’s take a look at an example. The orders
table contains all orders received, and the orderitems table contains the
individual items within each order. The following SQL statement retrieves
all the items in order number 20005:

Input ▼

SELECT prod_id, quantity, item_price
FROM orderitems
WHERE order_num = 20005;

Output ▼

prod_id quantity item_price
---------- ----------- ---------------------
ANV01 10 5.99
ANV02 3 9.99
TNT2 5 10.00
FB 1 10.00

The item_price column contains the per-unit price for each item in an
order. To expand the item price (item price multiplied by quantity
ordered), you simply do the following:

Input ▼

SELECT prod_id,
quantity,
item_price,
quantity*item_price AS expanded_price

FROM orderitems
WHERE order_num = 20005;

75Performing Mathematical Calculations

Output ▼

prod_id quantity item_price expanded_price
---------- ----------- --------------------- --------------
ANV01 10 5.99 59.90
ANV02 3 9.99 29.97
TNT2 5 10.00 50.00
FB 1 10.00 10.00

Analysis ▼

The expanded_price column shown in the previous output is a calculated
field; the calculation is simply quantity*item_price. The client applica-
tion can now use this new calculated column just as it would any other
column.

T-SQL supports the basic mathematical operators listed in Table 9.1. In
addition, parentheses can be used to establish order of evaluation (also
referred to as precedence). Refer to Lesson 7, “Advanced Data Filtering,”
for an explanation of precedence.

TABLE 9.1 T-SQL Mathematical Operators

Operator Description

+ Addition

- Subtraction

* Multiplication

/ Division

% Modulo (returns the remainder of a division)

76 LESSON 9: Creating Calculated Fields

TIP: How to Test Calculations

SELECT provides a great way to test and experiment with functions
and calculations. Although SELECT is usually used to retrieve data
from a table, the FROM clause may be omitted to simply access and
work with expressions. For example, SELECT 3 * 2; would return 6,
SELECT Trim(‘ abc ‘); would return abc, and SELECT
GetDate() uses the GetDate() function to return the current date
and time. You get the idea; use SELECT to experiment as needed.

Summary
In this lesson, you learned what calculated fields are and how to create
them. We used examples demonstrating the use of calculated fields for
both string concatenation and mathematical operations. In addition, you
learned how to create and use aliases so your application can refer to cal-
culated fields.

77Summary

This page intentionally left blank

LESSON 10

Using Data
Manipulation Functions

In this lesson, you’ll learn what functions are, what types of functions
T-SQL supports, and how to use these functions.

Understanding Functions
Like almost any other computer language, SQL supports the use of func-
tions to manipulate data. Functions are operations that are usually per-
formed on data, usually to facilitate conversion and manipulation.

An example of a function is RTrim(), which we used in the last lesson to
trim any spaces from the end of a string.

NOTE: Functions Are Less Portable than SQL

Code that runs on multiple systems is said to be portable. Most
SQL statements are relatively portable, and when differences
between SQL implementations do occur they are usually not that dif-
ficult to deal with. Functions, on the other hand, tend to be far less
portable. Just about every major Database Management System
(DBMS) supports functions that others don’t, and sometimes the dif-
ferences are significant.

With code portability in mind, many SQL programmers opt not to use
any implementation-specific features. Although this is a somewhat
noble and idealistic view, it is not always in the best interests of
application performance. If you opt not to use these functions, you
make your application code work harder. It must use other methods
to do what the DBMS could have done more efficiently.

If you do decide to use functions, make sure you comment your
code well, so that at a later date you (or another developer) will
know exactly to which SQL implementation you were writing.

Using Functions
Most SQL implementations support the following types of functions:

. Text functions are used to manipulate strings of text (for exam-
ple, trimming or padding values and converting values to upper-
and lowercase).

. Numeric functions are used to perform mathematical operations
on numeric data (for example, returning absolute numbers and
performing algebraic calculations).

. Date and time functions are used to manipulate date and time val-
ues and to extract specific components from these values (for exam-
ple, returning differences between dates and checking date validity).

. System functions return information specific to the DBMS being
used (for example, returning user login information or checking
version specifics).

Text Manipulation Functions
You’ve already seen an example of text manipulation functions in the last
lesson; the RTrim() function was used to trim white space from the end of
a column value. Here is another example, this time using the Upper()
function:

Input ▼

SELECT vend_name, UPPER(vend_name) AS vend_name_upcase
FROM vendors
ORDER BY vend_name;

Output ▼

vend_name vend_name_upcase
--------------------- ----------------
ACME ACME
Anvils R Us ANVILS R US
Furball Inc. FURBALL INC.
Jet Set JET SET
Jouets Et Ours JOUETS ET OURS
LT Supplies LT SUPPLIES

80 LESSON 10: Using Data Manipulation Functions

Analysis ▼

As you can see, Upper() converts text to uppercase, and so in this exam-
ple each vendor is listed twice, first exactly as stored in the vendors table
and then converted to uppercase in column vend_name_upcase.

Table 10.1 lists some commonly used text manipulation functions.

TABLE 10.1 Commonly Used Text Manipulation Functions

Function Description

CharIndex() Returns the position of a specified character within a
string

Left() Returns characters from the left of a string

Len() Returns the length of a string

Lower() Converts string to lowercase

LTrim() Trims white space from the left of a string

Replace() Replaces characters within a string with other speci-
fied characters

Right() Returns characters from the right of a string

RTrim() Trims white space from the right of a string

Soundex() Returns a string’s SOUNDEX value

Str() Converts a numeric value to a string

SubString() Returns characters from within a string

Upper() Converts string to uppercase

One item in Table 10.1 requires further explanation. SOUNDEX is an
algorithm that converts any string of text into an alphanumeric pattern
describing the phonetic representation of that text. SOUNDEX takes into
account similar-sounding characters and syllables, enabling strings to be
compared by how they sound rather than how they have been typed.
Although SOUNDEX is not a SQL concept, T-SQL (like many other
DBMSs) offers SOUNDEX support.

Here’s an example using the Soundex() function. Customer Coyote Inc.
is in the customers table and has a contact named Y. Lee. But what if
that were a typo, and the contact actually was supposed to have been Y.
Lie? Obviously, searching by the correct contact name would return no
data, as shown here:

81Using Functions

Input ▼

SELECT cust_name, cust_contact
FROM customers
WHERE cust_contact = ‘Y. Lie’;

Output ▼

cust_name cust_contact
----------------------- -------------------

Now try the same search using the Soundex() function to match all con-
tact names that sound similar to Y. Lie:

Input ▼

SELECT cust_name, cust_contact
FROM customers
WHERE Soundex(cust_contact) = Soundex(‘Y Lie’);

Output ▼

cust_name cust_contact
----------------------- -------------------
Coyote Inc. Y Lee

Analysis ▼

In this example, the WHERE clause uses the Soundex() function to convert
both the cust_contact column value and the search string to their
SOUNDEX values. Because Y. Lee and Y. Lie sound alike, their
SOUNDEX values match, and so the WHERE clause correctly filtered the
desired data.

Date and Time Manipulation Functions
Date and times are stored in tables using special datatypes with special
internal formats so they may be sorted or filtered quickly and efficiently,
as well as to save physical storage space.

The format used to store dates and times is usually of no use to your
applications; therefore, date and time functions are almost always used to

82 LESSON 10: Using Data Manipulation Functions

read, expand, and manipulate these values. Because of this, date and time
manipulation functions are some of the most important functions in the
T-SQL language.

Table 10.2 lists some commonly used date and time manipulation functions.

TABLE 10.2 Commonly Used Date and Time Manipulation Functions

Function Description

DateAdd() Adds to a date (days, weeks, and so on)

DateDiff() Calculates the difference between two dates

DateName() Returns a string representation of date parts

DatePart() Returns parts of a date (day of week, month, year,
and so on)

Day() Returns the day portion of a date

GetDate() Returns the current date and time

Month() Returns the month portion of a date

Year() Returns the year portion of a date

Functions DateDiff(), DateName(), and DatePart() require that a date
part identifier be passed to them. Table 10.3 lists the supported date parts.
(You may specify the date part or an abbreviation.)

TABLE 10.3 Supported Date Parts and Abbreviations

Part Abbreviation

day dd or d

dayofyear dy or y

hour hh

millisecond ms

minute mi or n

month m or mm

quarter q or qq

second ss or s

week wk or ww

weekday (DatePart() only) dw

year yy or yyyy

83Using Functions

For example, to obtain the days of the week that orders were placed, you
could use DatePart() specifying weekday as the part:

Input ▼

SELECT order_num,
DatePart(weekday, order_date) AS weekday

FROM orders;

Output ▼

order_num weekday
----------- -----------
20005 5
20006 2
20007 6
20008 2
20009 7

Analysis ▼

DatePart() extracts specified date parts from a date. DatePart(weekday,
order_date) returns the day of the week for each order_date value, as
shown in the aliases weekday column.

To return named weekdays (instead of numbers), you can use the
DateName() function in much the same way:

Input ▼

SELECT order_num,
DateName(weekday, DatePart(weekday, order_date)) AS

weekday
FROM orders;

Output ▼

order_num weekday
----------- -------------
20005 Saturday
20006 Wednesday
20007 Sunday
20008 Wednesday
20009 Monday

84 LESSON 10: Using Data Manipulation Functions

Analysis ▼

Like DatePart(), DateName() accepts a date part as its first parameter.
DateName(weekday, 2) returns Monday. DateName(month, 8) returns
August. By combining DateName() and DatePart(), you can return the
desired output.

85Using Functions

TIP: DatePart() Shortcuts

Day(), Month(), and Year() are shortcuts for DatePart(day,),
DatePart(month,), and DatePart(year,), respectively.

This would be a good time to revisit data filtering using WHERE. Thus far
we have filtered data using WHERE clauses that compared numbers and
text, but frequently data needs to be filtered by date. Filtering by date
requires some extra care and the use of special T-SQL functions.

The first thing to keep in mind is the date format used by SQL Server.
Whenever you specify a date, be it inserting or updating table values or
filtering using WHERE clauses, the date should be in one of the recognized
formats. T-SQL supports several string representations of dates:

. 2006-08-17

. August 17, 2006

. 20060817

. 8/17/2006

Of these formats, the last should be avoided (after all, is 04/05/06 May
4th of 2006, April 5th of 2006, May 6th of 2004, or… you get the idea).

TIP: Always Use Four-Digit Years

Two-digit years are supported, and SQL Server treats years 00–49 as
2000–2049 and years 50–99 as 1950–1999. Although these might in
fact be the intended years, it is far safer to always use a full four-
digit year so that SQL Server does not have to make any assump-
tions for you.

As such, a basic date comparison should be simple enough:

Input ▼

SELECT cust_id, order_num
FROM orders
WHERE order_date = ‘2005-09-01’;

Output ▼

cust_id order_num
----------- -----------
10001 20005

Analysis ▼

This SELECT statement worked; it retrieved a single order record, one with
an order_date of 2005-09-01.

But is using WHERE order_date = ‘2005-09-01’ safe? order_date has a
datatype of datetime. This type stores dates along with time values. The
values in our sample tables all have times of 00:00:00, but that might not
always be the case. What if order dates were stored using the current date
and time (so you’d not only know the order date but also the time of day
the order was placed)? Then WHERE order_date = ‘2005-09-01’ fails if,
for example, the stored order_date value is 2005-09-01 11:30:05. Even
though a row with that date is present, it is not retrieved because the
WHERE match failed.

The solution is to instruct SQL Server to only compare the specified date
to the date portion of the column instead of using the entire column value.
To do this, you must use the DateDiff() function. DateDiff() is used to
determine the difference between two dates. Look at this example:

Input ▼

SELECT cust_id, order_num
FROM orders
WHERE DateDiff(day, order_date, ‘2005-09-01’) = 0;

86 LESSON 10: Using Data Manipulation Functions

Output ▼

cust_id order_num
----------- -----------
10001 20005

Analysis ▼

Like DatePart() and DateName() used previously, DateDiff() requires
that three parameters be passed to it. The first is the date part to compare.
If you want to compare two dates by day (checking that they are the same
day), then specify day. If you want to check that two dates are the same
month (regardless of day of month), then specify month, and so on. The
next two parameters are the dates to be compared. DateDiff() returns the
difference between the two dates. A return value of 0 means that there is
no difference (they match). A return value of 5 would indicate that the
first date is 5 greater than the second date (5 months or 5 days, and so on,
depending on the date part specified). Similarly, a value of -3 would indi-
cate that the second date is 3 greater than the first date.

87Using Functions

TIP: Always Use DateDiff()

When comparing dates, always use DateDiff(), and don’t make
assumptions about how dates are stored.

Now that you know how to use dates to test for equality, using all the
other operators (introduced in Lesson 6, “Filtering Data”) should be self-
explanatory.

But one other type of date comparison warrants explanation. What if you
wanted to retrieve all orders placed in September 2005? A simple equality
test does not work because it matches the day of the month too. There are
several solutions, one of which follows:

Input ▼

SELECT cust_id, order_num
FROM orders
WHERE DateDiff(month, order_date, ‘2005-09-01’) = 0;

Output ▼

cust_id order_num
----------- -----------
10001 20005
10003 20006
10004 20007

Analysis ▼

Here, DateDiff() is used to locate any orders that match 2005-09-01,
matching those that are the same month. The truth is, 2005-09-10 or
2005-09-30 or any other date in September 2005 would have worked just
as well. Because the specified date part is month, dates will match if they
are in the same month (and the day of month is ignored).

Here’s another solution:

Input ▼

SELECT cust_id, order_num
FROM orders
WHERE Year(order_date) = 2005 AND Month(order_date) = 9;

Analysis ▼

Year() returns the year from a date (or a date time). Similarly, Month()
returns the month from a date. WHERE Year(order_date) = 2005 AND
Month(order_date) = 9 thus retrieves all rows that have an order_date
in year 2005 and in month 9.

Numeric Manipulation Functions
Numeric manipulation functions do just that, manipulate numeric data.
These functions tend to be used primarily for algebraic, trigonometric, or
geometric calculations and therefore are not as frequently used as string
or date and time manipulation functions.

The ironic thing is that of all the functions found in the major DBMSs,
the numeric functions are the ones that are most uniform and consistent.
Table 10.4 lists some of the more commonly used numeric manipulation
functions.

88 LESSON 10: Using Data Manipulation Functions

TABLE 10.4 Commonly Used Numeric Manipulation Functions

Function Description

Abs() Returns a number’s absolute value

Cos() Returns the trigonometric cosine of a specified angle

Exp() Returns the exponential value of a specific number

Pi() Returns the value of pi

Rand() Returns a random number

Round() Returns a number rounded to a specified length or
precision

Sin() Returns the trigonometric sine of a specified angle

Sqrt() Returns the square root of a specified number

Square() Returns the square of a specified number

Tan() Returns the trigonometric tangent of a specified
angle

Summary
In this lesson, you learned how to use SQL’s data manipulation functions,
paying special attention to working with dates.

89Summary

This page intentionally left blank

LESSON 11

Summarizing Data

In this lesson, you will learn what the SQL aggregate functions are and
how to use them to summarize table data.

Using Aggregate Functions
It is often necessary to summarize data without actually retrieving it all,
and SQL Server provides special functions for this purpose. Using these
functions, T-SQL queries are often used to retrieve data for analysis and
reporting purposes. Here are some examples of this type of retrieval:

. Determining the number of rows in a table (or the number of
rows that meet some condition or contain a specific value)

. Obtaining the sum of a group of rows in a table

. Finding the highest, lowest, and average values in a table col-
umn (either for all rows or for specific rows)

In each of these examples, you want a summary of the data in a table, not
the actual data itself. Therefore, returning the actual table data would be a
waste of time and processing resources (not to mention bandwidth). To
repeat, all you really want is the summary information.

To facilitate this type of retrieval, T-SQL features a set of aggregate func-
tions, some of which are listed in Table 11.1. These functions enable you
to perform all the types of retrieval just enumerated.

PLAIN ENGLISH: Aggregate Functions

Functions that operate on a set of rows to calculate and return a
single value.

TABLE 11.1 SQL Aggregate Functions

Function Description

Avg() Returns a column’s average value

Count() Returns the number of rows in a column

Max() Returns a column’s highest value

Min() Returns a column’s lowest value

Sum() Returns the sum of a column’s values

The use of each of these functions is explained in the following sections.

92 LESSON 11: Summarizing Data

NOTE: Standard Deviation

A series of standard deviation aggregate functions is also supported
by T-SQL, but these functions are not covered in the lessons.

The Avg() Function
Avg() is used to return the average value of a specific column by counting
both the number of rows in the table and the sum of their values. Avg()
can be used to return the average value of all columns or of specific
columns or rows.

This first example uses Avg() to return the average price of all the prod-
ucts in the products table:

Input ▼

SELECT Avg(prod_price) AS avg_price
FROM products;

Output ▼

avg_price

16.1335

Analysis ▼

The previous SELECT statement returns a single value, avg_price, that
contains the average price of all products in the products table.
avg_price is an alias, as explained in Lesson 9, “Creating Calculated
Fields.”

Avg() can also be used to determine the average value of specific columns
or rows. The following example returns the average price of products
offered by a specific vendor:

Input ▼

SELECT Avg(prod_price) AS avg_price
FROM products
WHERE vend_id = 1003;

Output ▼

avg_price

13.2128

Analysis ▼

This SELECT statement differs from the previous one only in that this one
contains a WHERE clause. The WHERE clause filters only products with a
vend_id of 1003; therefore, the value returned in avg_price is the average
of just that vendor’s products.

93Using Aggregate Functions

CAUTION: Individual Columns Only

Avg() may only be used to determine the average of a specific
numeric column, and that column name must be specified as the
function parameter. To obtain the average value of multiple columns,
you must use multiple Avg() functions.

NOTE: NULL Values

Column rows containing NULL values are ignored by the Avg()
function.

The Count() Function
Count() does just that: It counts. Using Count(), you can determine the
number of rows in a table or the number of rows that match a specific
criterion.

Count() can be used in two ways:

. Use Count(*) to count the number of rows in a table, regardless
of whether columns contain values or NULL values.

. Use Count(column) to count the number of rows that have val-
ues in a specific column, ignoring NULL values.

This first example returns the total number of customers in the customers
table:

Input ▼

SELECT Count(*) AS num_cust
FROM customers;

Output ▼

num_cust

5

Analysis ▼

In this example, Count(*) is used to count all rows, regardless of values.
The count is returned in num_cust.

The following example counts just the customers with an email address:

Input ▼

SELECT Count(cust_email) AS num_cust
FROM customers;

94 LESSON 11: Summarizing Data

Output ▼

num_cust

3

Analysis ▼

This SELECT statement uses Count(cust_email) to count only rows with a
value in the cust_email column. In this example, cust_email is 3 (mean-
ing that only three of the five customers have an email address).

95Using Aggregate Functions

NOTE: NULL Values

Column rows with NULL values in them are ignored by the Count()
function if a column name is specified, but not if the asterisk (*) is
used.

The Max() Function
Max() returns the highest value in a specified column. Max() requires that
the column name be specified, as shown here:

Input ▼

SELECT Max(prod_price) AS max_price
FROM products;

Output ▼

max_price

55.00

Analysis ▼

Here, Max() returns the price of the most expensive item in the products
table.

96 LESSON 11: Summarizing Data

TIP: Using Max() with Nonnumeric Data

Although Max() is usually used to find the highest numeric or date
value, T-SQL allows it to be used to return the highest value in any
column, including textual columns. When used with textual data,
Max() returns the row that would be the last if the data were sorted
by that column.

NOTE: NULL Values

Column rows with NULL values in them are ignored by the Max()
function.

The Min() Function
Min() does the exact opposite of Max(); it returns the lowest value in a
specified column. Like Max(), Min() requires that the column name be
specified, as shown here:

Input ▼

SELECT Min(prod_price) AS min_price
FROM products;

Output ▼

min_price

2.50

Analysis ▼

Here, Min() returns the price of the least-expensive item in the products
table.

TIP: Using Min() with Nonnumeric Data

Similar to the Max() function, T-SQL allows Min() to be used to
return the lowest value in any columns, including textual columns.
When used with textual data, Min() returns the row that would be
first if the data were sorted by that column.

97Using Aggregate Functions

NOTE: NULL Values

Column rows with NULL values in them are ignored by the Min()
function.

The Sum() Function
Sum() is used to return the sum (total) of the values in a specific column.

Here is an example to demonstrate this. The orderitems table contains
the actual items in an order, and each item has an associated quantity.
The total number of items ordered (the sum of all the quantity values)
can be retrieved as follows:

Input ▼

SELECT Sum(quantity) AS items_ordered
FROM orderitems
WHERE order_num = 20005;

Output ▼

items_ordered

19

Analysis ▼

The function Sum(quantity) returns the sum of all the item quantities in
an order, and the WHERE clause ensures that just the right order items are
included.

Sum() can also be used to total calculated values. In this next example, the
total order amount is retrieved by totaling item_price*quantity for each
item:

Input ▼

SELECT Sum(item_price*quantity) AS total_price
FROM orderitems
WHERE order_num = 20005;

Output ▼

total_price

149.87

Analysis ▼

The function Sum(item_price*quantity) returns the sum of all the
expanded prices in an order, and again the WHERE clause ensures that just
the correct order items are included.

98 LESSON 11: Summarizing Data

TIP: Performing Calculations on Multiple Columns

All the aggregate functions can be used to perform calculations on
multiple columns using the standard mathematical operators, as
shown in the example.

NOTE: NULL Values

Column rows with NULL values in them are ignored by the Sum()
function.

Aggregates on Distinct Values
The five aggregate functions can all be used in two ways:

. To perform calculations on all rows, you specify the ALL argu-
ment or specify no argument at all (because ALL is the default
behavior).

. To include only unique values, you specify the DISTINCT
argument.

TIP: ALL Is the Default

The ALL argument need not be specified because it is the default
behavior. If DISTINCT is not specified, ALL is assumed.

The following example uses the Avg() function to return the average
product price offered by a specific vendor. It is the same SELECT statement
used in the previous example, but here the DISTINCT argument is used so
the average only takes into account unique prices:

Input ▼

SELECT Avg(DISTINCT prod_price) AS avg_price
FROM products
WHERE vend_id = 1003;

Output ▼

avg_price

15.998

Analysis ▼

As you can see, in this example avg_price is higher when DISTINCT is
used because there are multiple items with the same lower price.
Excluding them raises the average price.

99Aggregates on Distinct Values

CAUTION: DISTINCT Usage Restrictions

DISTINCT may only be used with Count() if a column name is spec-
ified. DISTINCT may not be used with Count(*). Therefore,
Count(DISTINCT *) is not allowed and generates an error.
Similarly, DISTINCT must be used with a column name and not with
a calculation or expression.

TIP: Using DISTINCT with Min() and Max()

Although DISTINCT can technically be used with Min() and Max(),
there is actually no value in doing so. The minimum and maximum
values in a column are the same whether or not only distinct values
are included.

Combining Aggregate Functions
All the examples of aggregate functions used thus far have involved a sin-
gle function. But actually, SELECT statements may contain as few or as
many aggregate functions as needed. Look at this example:

Input ▼

SELECT Count(*) AS num_items,
Min(prod_price) AS price_min,
Max(prod_price) AS price_max,
Avg(prod_price) AS price_avg

FROM products;

Output ▼

num_items price_min price_max price_avg
----------- -------------------- -------------------- ---------
14 2.50 55.00 16.1335

Analysis ▼

Here, a single SELECT statement performs four aggregate calculations in
one step and returns four values (the number of items in the products
table as well as the highest, lowest, and average product prices).

100 LESSON 11: Summarizing Data

TIP: Naming Aliases

When specifying alias names to contain the results of an aggregate
function, try not to use the name of an actual column in the table.
Although there is nothing actually illegal about doing so, using
unique names makes your SQL easier to understand and work with
(and troubleshoot in the future).

Summary
Aggregate functions are used to summarize data. SQL Server supports a
range of aggregate functions, all of which can be used in multiple ways to
return just the results you need. These functions are designed to be highly
efficient, and they usually return results far more quickly than you could
calculate yourself within your own client application.

LESSON 12

Grouping Data

In this lesson, you’ll learn how to group data so you can summarize sub-
sets of table contents. This involves two new SELECT statement clauses:
the GROUP BY clause and the HAVING clause.

Understanding Data Grouping
In the last lesson, you learned that the SQL aggregate functions can be
used to summarize data. This enables you to count rows, calculate sums
and averages, and obtain high and low values without having to retrieve
all the data.

All the calculations thus far were performed on all the data in a table or
on data that matched a specific WHERE clause. As a reminder, the following
example returns the number of products offered by vendor 1003:

Input ▼

SELECT Count(*) AS num_prods
FROM products
WHERE vend_id = 1003;

Output ▼

num_prods

7

But what if you want to return the number of products offered by each
vendor? Or products offered by vendors who offer a single product, or
only those who offer more than 10 products?

This is where groups come into play. Grouping enables you to divide data
into logical sets so you can perform aggregate calculations on each group.

Creating Groups
Groups are created using the GROUP BY clause in your SELECT statement.
The best way to understand this is to look at an example:

Input ▼

SELECT vend_id, Count(*) AS num_prods
FROM products
GROUP BY vend_id;

Output ▼

vend_id num_prods
----------- -----------
1001 3
1002 2
1003 7
1005 2

Analysis ▼

The preceding SELECT statement specifies two columns: vend_id, which
contains the ID of a product’s vendor, and num_prods, which is a calculat-
ed field (created using the Count(*) function). The GROUP BY clause
instructs SQL Server to sort the data and group it by vend_id. This causes
num_prods to be calculated once per vend_id rather than once for the
entire table. As you can see in the output, vendor 1001 has three products
listed, vendor 1002 has two products listed, vendor 1003 has seven prod-
ucts listed, and vendor 1005 has two products listed.

Because you used GROUP BY, you did not have to specify each group to be
evaluated and calculated. That was done automatically. The GROUP BY
clause instructs SQL Server to group the data and then perform the aggre-
gate on each group rather than on the entire result set.

102 LESSON 12: Grouping Data

Before you use GROUP BY, here are some important rules about its use that
you need to know:

. GROUP BY clauses can contain as many columns as you want.
This enables you to nest groups, providing you with more granu-
lar control over how data is grouped.

. If you have multiple groups specified in your GROUP BY clause,
data is summarized at the last specified group. In other words,
all the columns specified are evaluated together when grouping
is established (so you won’t get data back for each individual
column level).

. Every column listed in GROUP BY must be a retrieved column or
a valid expression (but not an aggregate function). If an expres-
sion is used in the SELECT statement, that same expression must
be specified in GROUP BY. Aliases cannot be used.

. Aside from the aggregate calculations statements, every column
in your SELECT statement should be present in the GROUP BY
clause.

. If the grouping column contains a row with a NULL value, NULL
will be returned as a group. If there are multiple rows with NULL
values, they’ll all be grouped together.

. The GROUP BY clause must come after any WHERE clause and
before any ORDER BY clause.

Filtering Groups
In addition to being able to group data using GROUP BY, SQL Server also
allows you to filter which groups to include and which to exclude. For
example, you might want a list of all customers who have made at least
two orders. To obtain this data, you must filter based on the complete
group, not on individual rows.

You’ve already seen the WHERE clause in action (introduced back in Lesson
6, “Filtering Data”). But WHERE does not work here because WHERE filters

103Filtering Groups

specific rows, not groups. As a matter of fact, WHERE has no idea what a
group is.

So what do you use instead of WHERE? T-SQL provides yet another clause
for this purpose: the HAVING clause. HAVING is very similar to WHERE. In
fact, all types of WHERE clauses you learned about thus far can also be used
with HAVING. The only difference is that WHERE filters rows and HAVING fil-
ters groups.

104 LESSON 12: Grouping Data

TIP: HAVING Supports All of WHERE’s Operators

In Lesson 6 and Lesson 7, “Advanced Data Filtering,” you learned
about WHERE clause conditions (including wildcard conditions and
clauses with multiple operators). All the techniques and options you
learned about WHERE can be applied to HAVING. The syntax is identi-
cal; just the keyword is different.

In fact, HAVING is so like WHERE that if you were to use HAVING with-
out specifying a GROUP BY clause, it would actually function as a
WHERE clause.

So how do you filter rows? Look at the following example:

Input ▼

SELECT cust_id, Count(*) AS orders
FROM orders
GROUP BY cust_id
HAVING Count(*) >= 2;

Output ▼

cust_id orders
----------- -----------
10001 2

Analysis ▼

The first three lines of this SELECT statement are similar to the statements
shown previously. The final line adds a HAVING clause that filters on those
groups with a Count(*) >= 2, that is, two or more orders.

As you can see, a WHERE clause does not work here because the filtering is
based on the group aggregate value, not on the values of specific rows.

105Filtering Groups

NOTE: The Difference Between HAVING and WHERE

Here’s another way to look at it: WHERE filters before data is
grouped, and HAVING filters after data is grouped. This is an impor-
tant distinction; rows that are eliminated by a WHERE clause are not
included in the group. This could change the calculated values,
which in turn could affect which groups are filtered based on the use
of those values in the HAVING clause.

So is there ever a need to use both the WHERE and HAVING clauses in one
statement? Actually, yes, there is. Suppose you want to further filter the
previous statement so it returns any customers who placed two or more
orders in the past 12 months. To do that, you can add a WHERE clause that
filters out just the orders placed in the past 12 months. You then add a
HAVING clause to filter just the groups with two or more rows in them.

To better demonstrate this, look at the following example, which lists all
vendors who have two or more products priced at 10 or more:

Input ▼

SELECT vend_id, Count(*) AS num_prods
FROM products
WHERE prod_price >= 10
GROUP BY vend_id
HAVING Count(*) >= 2;

Output ▼

vend_id num_prods
----------- -----------
1003 4
1005 2

Analysis ▼

This statement warrants an explanation. The first line is a basic SELECT
using an aggregate function, much like the examples thus far. The WHERE

clause filters all rows with a prod_price of at least 10. Data is then
grouped by vend_id, and then a HAVING clause filters just those groups
with a count of 2 or more. Without the WHERE clause, two extra rows
would have been retrieved (vendor 1002, who only sells products priced
under 10, and vendor 1001, who sells three products but only one of them
is priced greater or equal to 10), as shown here:

Input ▼

SELECT vend_id, Count(*) AS num_prods
FROM products
GROUP BY vend_id
HAVING Count(*) >= 2;

Output ▼

vend_id num_prods
----------- -----------
1001 3
1002 2
1003 7
1005 2

106 LESSON 12: Grouping Data

CAUTION: Not All Datatypes

HAVING and GROUP BY cannot be used with columns of type text,
ntext, and image.

Grouping and Sorting
GROUP BY and ORDER BY perform different but related functions, and many
users confuse the two. To help clarify when and why to use these two
clauses, Table 12.1 summarizes the differences between them.

TABLE 12.1 ORDER BY Versus GROUP BY

ORDER BY GROUP BY

Sorts generated output. Groups rows. The output might not be
in group order, however.

Any columns (even columns Only selected columns or expression
not selected) may be used. columns may be used, and every

selected column expression must be
used.

Never required. Required if using columns (or expres-
sions) with aggregate functions.

The first difference listed in Table 12.1 is extremely important. More
often than not, you will find that data grouped using GROUP BY will indeed
be output in group order. But that is not always the case, and it is not
actually required by the SQL specifications. Furthermore, you might actu-
ally want it sorted differently than it is grouped. Just because you group
data one way (to obtain group-specific aggregate values) does not mean
that you want the output sorted that same way. You should always provide
an explicit ORDER BY clause as well, even if it is identical to the GROUP BY
clause.

107Grouping and Sorting

TIP: Don’t Forget ORDER BY

As a rule, any time you use a GROUP BY clause, you should also
specify an ORDER BY clause. That is the only way to ensure that
data is sorted properly. Never rely on GROUP BY to sort your data.

To demonstrate the use of both GROUP BY and ORDER BY, let’s look at an
example. The following SELECT statement is similar to the ones shown
previously. It retrieves the order number and total order price of all orders
with a total price of 50 or more:

Input ▼

SELECT order_num, Sum(quantity*item_price) AS ordertotal
FROM orderitems
GROUP BY order_num
HAVING Sum(quantity*item_price) >= 50;

Output ▼

order_num ordertotal
----------- ---------------------
20005 149.87
20006 55.00
20007 1000.00
20008 125.00

To sort the output by order total, all you need to do is add an ORDER BY
clause, as follows:

Input ▼

SELECT order_num, Sum(quantity*item_price) AS ordertotal
FROM orderitems
GROUP BY order_num
HAVING Sum(quantity*item_price) >= 50
ORDER BY ordertotal;

Output ▼

order_num ordertotal
----------- ---------------------
20006 55.00
20008 125.00
20005 149.87
20007 1000.00

Analysis ▼

In this example, the GROUP BY clause is used to group the data by order
number (the order_num column) so that the Sum(*) function can return the
total order price. The HAVING clause filters the data so that only orders
with a total price of 50 or more are returned. Finally, the output is sorted
using the ORDER BY clause.

SELECT Clause Ordering
This is probably a good time to review the order in which SELECT state-
ment clauses are to be specified. Table 12.2 lists all the clauses you have
learned thus far, in the order they must be used.

108 LESSON 12: Grouping Data

TABLE 12.2 SELECT Clauses and Their Sequence

Clause Description Required

SELECT Columns or expressions Yes
to be returned

FROM Table to retrieve data Only if selecting data
from from a table

WHERE Row-level filtering No

GROUP BY Group specification Only if calculating aggre-
gates by group

HAVING Group-level filtering No

ORDER BY Output sort order No

Summary
In Lesson 11, “Summarizing Data,” you learned how to use the SQL
aggregate functions to perform summary calculations on your data. In this
lesson, you learned how to use the GROUP BY clause to perform these cal-
culations on groups of data, returning results for each group. You saw
how to use the HAVING clause to filter specific groups. You also learned
the difference between ORDER BY and GROUP BY and between WHERE and
HAVING.

109Summary

This page intentionally left blank

LESSON 13

Working with
Subqueries

In this lesson, you’ll learn what subqueries are and how to use them.

Understanding Subqueries
SELECT statements are SQL queries. All the SELECT statements you have
seen thus far are simple queries: single statements retrieving data from
individual database tables.

PLAIN ENGLISH: Query

Any SQL statement. However, this term is generally used to refer to
SELECT statements.

SQL also enables you to create subqueries: queries that are embedded
into other queries. Why would you want to do this? The best way to
understand this concept is to look at a couple examples.

Filtering by Subquery
The database tables used in all the lessons in this book are relational
tables. (See Appendix B, “The Example Tables,” for a description of each
of the tables and their relationships.) Order data is stored in two tables.
The orders table stores a single row for each order containing an order
number, customer ID, and order date. The individual order items are
stored in the related orderitems table. The orders table does not store

customer information. It only stores a customer ID. The actual customer
information is stored in the customers table.

Now suppose you wanted a list of all the customers who ordered item
TNT2. What would you have to do to retrieve this information? Here are
the steps to accomplish this:

1. Retrieve the order numbers of all orders containing item TNT2.

2. Retrieve the customer ID of all the customers who have orders
listed in the order numbers returned in the previous step.

3. Retrieve the customer information for all the customer IDs
returned in the previous step.

Each of these steps can be executed as a separate query. By doing so, you
use the results returned by one SELECT statement to populate the WHERE
clause of the next SELECT statement.

However, you can also use subqueries to combine all three queries into
one single statement.

The first SELECT statement should be self-explanatory by now. It retrieves
the order_num column for all order items with a prod_id of TNT2. The
output lists the two orders containing this item:

Input ▼

SELECT order_num
FROM orderitems
WHERE prod_id = ‘TNT2’;

Output ▼

order_num

20005
20007

The next step is to retrieve the customer IDs associated with orders 20005
and 20007. Using the IN clause, described in Lesson 7, “Advanced Data
Filtering,” you can create a SELECT statement as follows:

112 LESSON 13: Working with Subqueries

Input ▼

SELECT cust_id
FROM orders
WHERE order_num IN (20005,20007);

Output ▼

cust_id

10001
10004

Now, combine the two queries by turning the first (the one that returned
the order numbers) into a subquery. Look at the following SELECT
statement:

Input ▼

SELECT cust_id
FROM orders
WHERE order_num IN (SELECT order_num

FROM orderitems
WHERE prod_id = ‘TNT2’);

Output ▼

cust_id

10001
10004

Analysis ▼

Subqueries are always processed starting with the innermost SELECT state-
ment and working outward. When the preceding SELECT statement is
processed, SQL Server actually performs two operations.

First, it runs the subquery:

SELECT order_num FROM orderitems WHERE prod_id=’TNT2’

113Filtering by Subquery

That query returns the two order numbers, 20005 and 20007. Those two
values are then passed to the WHERE clause of the outer query in the
comma-delimited format required by the IN operator. The outer query
now becomes this:

SELECT cust_id FROM orders WHERE order_num IN (20005,20007)

As you can see, the output is correct and exactly the same as the output
returned by the previous hard-coded WHERE clause.

114 LESSON 13: Working with Subqueries

TIP: Formatting Your SQL

SELECT statements containing subqueries can be difficult to read
and debug, especially as they grow in complexity. Breaking up the
queries over multiple lines and indenting the lines appropriately, as
shown here, can greatly simplify working with subqueries.

You now have the IDs of all the customers who ordered item TNT2. The
next step is to retrieve the customer information for each of those cus-
tomer IDs. Here is the SQL statement to retrieve the two columns:

Input ▼

SELECT cust_name, cust_contact
FROM customers
WHERE cust_id IN (10001,10004);

Instead of hard-coding those customer IDs, you can turn this WHERE clause
into yet another subquery:

Input ▼

SELECT cust_name, cust_contact
FROM customers
WHERE cust_id IN (SELECT cust_id

FROM orders
WHERE order_num IN (SELECT order_num

FROM orderitems
WHERE prod_id = ‘TNT2’));

Output ▼

cust_nam cust_contact
--------------------- ---------------
Coyote Inc. Y Lee
Yosemite Place Y Sam

Analysis ▼

To execute this SELECT statement, SQL Server actually had to perform
three SELECT statements. The innermost subquery returned a list of order
numbers that was then used as the WHERE clause for the subquery above it.
That subquery returned a list of customer IDs that was used as the WHERE
clause for the top-level query. The top-level query actually returned the
desired data.

As you can see, using subqueries in a WHERE clause enables you to write
extremely powerful and flexible SQL statements. There is no limit
imposed on the number of subqueries that can be nested, although in prac-
tice you will find that performance tells you when you are nesting too
deeply.

115Filtering by Subquery

CAUTION: Single Column Only

With the notable exception of subqueries used in conjunction with
EXISTS (as will be shown shortly), subquery SELECT statements can
only retrieve a single column, and attempting to retrieve multiple
columns will return an error.

Although generally used in conjunction with the IN operator, subqueries
can also be used to test for equality (using =), non-equality (using <>), and
so on.

CAUTION: Subqueries and Performance

The code shown here works, and it achieves the desired result.
However, using subqueries is not always the most efficient way to
perform this type of data retrieval, although it might be. More on this
is in Lesson 14, “Joining Tables,” where you will revisit this same
example.

Using Subqueries as Calculated
Fields
Another way to use subqueries is in creating calculated fields. Suppose
you want to display the total number of orders placed by every customer
in your customers table. Orders are stored in the orders table along with
the appropriate customer ID.

To perform this operation, follow these steps:

1. Retrieve the list of customers from the customers table.

2. For each customer retrieved, count the number of associated
orders in the orders table.

As you learned in the previous two lessons, you can use SELECT Count(*)
to count rows in a table, and by providing a WHERE clause to filter a specif-
ic customer ID, you can count just that customer’s orders. For example,
the following code counts the number of orders placed by customer
10001:

Input ▼

SELECT Count(*) AS orders
FROM orders
WHERE cust_id = 10001;

To perform that Count(*) calculation for each customer, use Count(*) as
a subquery. Look at the following code:

Input ▼

SELECT cust_name,
cust_state,
(SELECT Count(*)
FROM orders
WHERE orders.cust_id = customers.cust_id) AS orders

FROM customers
ORDER BY cust_name;

116 LESSON 13: Working with Subqueries

Output ▼

cust_name cust_state orders
--------------------------- ---------- -----------
Coyote Inc. MI 2
E Fudd IL 1
Mouse House OH 0
Wascals IN 1
Yosemite Place AZ 1

Analysis ▼

This SELECT statement returns three columns for every customer in the
customers table: cust_name, cust_state, and orders. orders is a calcu-
lated field that is set by a subquery provided in parentheses. That sub-
query is executed once for every customer retrieved. In this example, the
subquery is executed five times because five customers were retrieved.

The WHERE clause in this subquery is a little different from the WHERE
clauses used previously because it uses fully qualified column names (first
mentioned in Lesson 4, “Retrieving Data”). The following clause tells
SQL to compare the cust_id in the orders table to the one currently
being retrieved from the customers table:

WHERE orders.cust_id = customers.cust_id

117Using Subqueries as Calculated Fields

PLAIN ENGLISH: Correlated Subquery

A subquery that refers to the outer query.

This type of subquery is called a correlated subquery. This syntax, the
table name and the column name separated by a period, must be used
whenever there is possible ambiguity about column names. Why? Well,
let’s look at what happens if fully qualified column names are not used:

Input ▼

SELECT cust_name,
cust_state,
(SELECT Count(*)
FROM orders
WHERE cust_id = cust_id) AS orders

FROM customers
ORDER BY cust_name;

Output ▼

cust_name cust_state orders
--------------------------- ---------- -----------
Coyote Inc. MI 5
E Fudd IL 5
Mouse House OH 5
Wascals IN 5
Yosemite Place AZ 5

Analysis ▼

Obviously the returned results are incorrect (compare them to the previous
results), but why did this happen? There are two cust_id columns, one in
customers and one in orders, and those two columns need to be com-
pared to correctly match orders with their appropriate customers. Without
fully qualifying the column names, SQL Server assumes you are compar-
ing the cust_id in the orders table to itself. Also, the statement

SELECT Count(*) FROM orders WHERE cust_id = cust_id;

always returns the total number of orders in the orders table (because
SQL Server checks to see that every order’s cust_id matches itself, which
it always does, of course).

Although subqueries are extremely useful in constructing this type of
SELECT statement, care must be taken to properly qualify ambiguous col-
umn names.

118 LESSON 13: Working with Subqueries

NOTE: Always More Than One Solution

As explained earlier in this lesson, although the sample code shown
here works, it is often not the most efficient way to perform this type
of data retrieval. You will revisit this example in a later lesson.

Checking for Existence with
Subqueries
Another use for subqueries is in conjunction with the EXISTS predicate.
EXISTS, when used in a WHERE clause, looks at the results returned by a
subquery, not at specific columns of data, but rather at the number of
rows. If the subquery returns rows, the EXISTS test is true and the WHERE
clause matches. However, if no rows are returned, the EXISTS test is false,
and the WHERE clause does not match.

Look at this SELECT statement:

Input ▼

SELECT cust_id, cust_name
FROM customers
WHERE cust_id IN (SELECT cust_id

FROM orders
WHERE DateDiff(month, order_date,

‘2005-09-01’) = 0
AND customers.cust_id = orders.cust_id);

Output ▼

cust_id cust_name
----------- ------------------
10001 Coyote Inc.
10003 Wascals
10004 Yosemite Place

Analysis ▼

This SELECT statement retrieves the customer name and ID for any cus-
tomers who made orders in the month of September 2005. Like the exam-
ples shown earlier in this lesson, the WHERE clause uses IN and a subquery
to first select the IDs of customers who made orders the specified month,
and then uses the results of that subquery to select just the desired cus-
tomers from the customers table.

119Checking for Existence with Subqueries

Now let’s look at another SELECT statement that returns the exact same
output:

Input ▼

SELECT cust_id, cust_name
FROM customers
WHERE EXISTS (SELECT *

FROM orders
WHERE DateDiff(month, order_date,

‘2005-09-01’) = 0
AND customers.cust_id = orders.cust_id);

Analysis ▼

This WHERE clause uses EXISTS instead of IN. The subquery is much the
same as the one used with IN, except that this one also matches the
cust_id columns in both the customers table and the orders table so that
just the customers with orders in September 2005 are retrieved. You’ll
notice that the subquery uses SELECT *, which is usually not allowed in
subqueries, although in truth it would make no difference what columns
were selected because it is not the returned data that is being used to filter
customers, but the existence of any matching data.

So, which to use, IN or EXISTS? For the most part you can use either; both
will let you use subqueries to filter data, and both can be negated using
NOT to find rows that don’t match (perhaps to find all the customers who
did not order in a specific month). The biggest practical difference
between the two is performance. Sometimes statements using EXISTS can
be processed quicker than those using IN, which is why it is often best to
experiment with both options (as well as a third option, using joins, as
you will see in the next lesson).

120 LESSON 13: Working with Subqueries

121Summary

NOTE: Build Queries with Subqueries Incrementally

Testing and debugging queries with subqueries can be tricky, particu-
larly as these statements grow in complexity. The safest way to build
(and test) queries with subqueries is to write the T-SQL code incre-
mentally, in much the same way as SQL Server processes sub-
queries. Build and test the innermost query first. Then build and
test the outer query with hard-coded data, and only after you have
verified that it is working embed the subquery. Then test it again.
Keep repeating these steps for each additional query. This will take
just a little longer to construct your queries, but doing so saves you
lots of time later (when you try to figure out why queries are not
working) and significantly increases the likelihood of them working
the first time.

Summary
In this lesson, you learned what subqueries are and how to use them. The
most common uses for subqueries are in WHERE clauses, with IN operators,
and for populating calculated columns. You saw examples of all these
types of operations.

This page intentionally left blank

LESSON 14

Joining Tables

In this lesson, you’ll learn what joins are, why they are used, and how to
create SELECT statements using them.

Understanding Joins
One of SQL’s most powerful features is the capability to join tables on the
fly within data-retrieval queries. Joins are one of the most important oper-
ations you can perform using SQL SELECT, and a good understanding of
joins and join syntax is an extremely important part of learning SQL.

Before you can effectively use joins, you must understand relational tables
and the basics of relational database design. What follows is by no means
a complete coverage of the subject, but it should be enough to get you up
and running.

Understanding Relational Tables
The best way to understand relational tables is to look at a real-world
example.

Suppose you had a database table containing a product catalog, with each
catalog item in its own row. The kind of information you would store with
each item would include a product description and price, along with ven-
dor information about the company that creates the product.

Now suppose you had multiple catalog items created by the same vendor.
Where would you store the vendor information (things such as vendor
name, address, and contact information)? You wouldn’t want to store that
data along with the products for several reasons:

. Because the vendor information is the same for each product
that vendor produces, repeating the information for each product
is a waste of time and storage space.

. If vendor information changes (for example, if the vendor moves
or the area code changes), you would need to update every
occurrence of the vendor information.

. When data is repeated (that is, the vendor information is used
with each product), there is a high likelihood that the data will
not be entered exactly the same way each time. Inconsistent data
is extremely difficult to use in reporting.

The key here is that having multiple occurrences of the same data is never
a good thing, and that principle is the basis for relational database design.
Relational tables are designed so information is split into multiple tables,
one for each datatype. The tables are related to each other through com-
mon values (and thus the relational in relational design).

In our example, you can create two tables, one for vendor information and
one for product information. The vendors table contains all the vendor
information, one table row per vendor, along with a unique identifier for
each vendor. This value, called a primary key, can be a vendor ID or any
other unique value. (Primary keys were first mentioned in Lesson 1,
“Understanding SQL”).

The products table stores only product information, with no vendor-spe-
cific information other than the vendor ID (the vendors table’s primary
key). This key, called a foreign key, relates the vendors table to the prod-
ucts table, and using this vendor ID enables you to use the vendors table
to find the details about the appropriate vendor.

124 LESSON 14: Joining Tables

PLAIN ENGLISH: Foreign Key

A column in one table that contains the primary key values from
another table, thus defining the relationships between tables.

What does this do for you? Well, consider the following:

. Vendor information is never repeated, so time and space are not
wasted.

. If vendor information changes, you can update a single record in
the vendors table. Data in related tables does not change.

. Because no data is repeated, the data used is obviously consis-
tent, making data reporting and manipulation much simpler.

The bottom line is that relational data can be stored efficiently and manip-
ulated easily. Because of this, relational databases scale far better than
nonrelational databases.

125Understanding Joins

PLAIN ENGLISH: Scale

Able to handle an increasing load without failing. A well-designed
database or application is said to scale well.

Why Use Joins?
As just explained, breaking data into multiple tables enables more effi-
cient storage, easier manipulation, and greater scalability. But these bene-
fits come with a price.

If data is stored in multiple tables, how can you retrieve that data with a
single SELECT statement?

The answer is to use a join. Simply put, a join is a mechanism used to
associate tables within a SELECT statement (and thus the name join). Using
a special syntax, you can join multiple tables so a single set of output is
returned, and the join associates the correct rows in each table on the fly.

126 LESSON 14: Joining Tables

NOTE: Maintaining Referential Integrity

It is important to understand that a join is not a physical entity; in
other words, it does not exist in the actual database tables. A join is
created by SQL Server as needed, and it persists for the duration of
the query execution.

When using relational tables, it is important that you only insert
valid data into relational columns. Going back to the example, if
products were stored in the products table with an invalid vendor ID
(one not present in the vendors table), those products would be
inaccessible because they would not be related to any vendor.

To prevent this from occurring, SQL Server can be instructed to only
allow valid values (ones present in the vendors table) in the vendor
ID column in the products table. This is known as maintaining refer-
ential integrity, and it is achieved by specifying the primary and for-
eign keys as part of the table definitions (as will be explained in
Lesson 20, “Creating and Manipulating Tables”).

Creating a Join
Creating a join is very simple. You must specify all the tables to be
included and how they are related to each other. Look at the following
example:

Input ▼

SELECT vend_name, prod_name, prod_price
FROM vendors, products
WHERE vendors.vend_id = products.vend_id
ORDER BY vend_name, prod_name;

Output ▼

vend_name prod_name prod_price
------------------ --------------------------- ----------
ACME Bird seed 10.00
ACME Carrots 2.50
ACME Detonator 13.00
ACME Safe 50.00

ACME Sling 4.49
ACME TNT (1 stick) 2.50
ACME TNT (5 sticks) 10.00
Anvils R Us .5 ton anvil 5.99
Anvils R Us 1 ton anvil 9.99
Anvils R Us 2 ton anvil 14.99
Jet Set JetPack 1000 35.00
Jet Set JetPack 2000 55.00
LT Supplies Fuses 3.42
LT Supplies Oil can 8.99

Analysis ▼

In the preceding code, the SELECT statement starts in the same way as all
the statements you’ve looked at thus far, by specifying the columns to be
retrieved. The big difference here is that two of the specified columns
(prod_name and prod_price) are in one table, whereas the other
(vend_name) is in another table.

Now look at the FROM clause. Unlike all the prior SELECT statements, this
one has two tables listed in the FROM clause: vendors and products. These
are the names of the two tables that are being joined in this SELECT state-
ment. The tables are correctly joined with a WHERE clause that instructs
SQL Server to match vend_id in the vendors table with vend_id in the
products table.

You’ll notice that the columns are specified as vendors.vend_id and
products.vend_id. This fully qualified column name is required here
because if you just specify vend_id, SQL Server cannot tell which
vend_id columns you are referring to (because there are two of them, one
in each table).

127Creating a Join

CAUTION: Fully Qualifying Column Names

You must use the fully qualified column name (table and column
separated by a period) whenever there is possible ambiguity about
to which column you are referring. SQL Server returns an error mes-
sage if you refer to an ambiguous column name without fully qualify-
ing it with a table name.

The Importance of the WHERE Clause
It might seem strange to use a WHERE clause to set the join relationship,
but actually there is a very good reason for this. Remember, when tables
are joined in a SELECT statement, that relationship is constructed on the
fly. Nothing in the database table definitions can instruct SQL Server how
to join the tables. You have to do that yourself. When you join two tables,
what you are actually doing is pairing every row in the first table with
every row in the second table. The WHERE clause acts as a filter to only
include rows that match the specified filter condition, the join condition,
in this case. Without the WHERE clause, every row in the first table is paired
with every row in the second table, regardless of whether they logically go
together.

128 LESSON 14: Joining Tables

PLAIN ENGLISH: Cartesian Product

The results returned by a table relationship without a join condition.
The number of rows retrieved is the number of rows in the first table
multiplied by the number of rows in the second table.

To understand this, look at the following SELECT statement and output:

Input ▼

SELECT vend_name, prod_name, prod_price
FROM vendors, products
ORDER BY vend_name, prod_name;

Output ▼

vend_name prod_name prod_price
------------------ --------------------------- ----------
ACME .5 ton anvil 5.99
ACME 1 ton anvil 9.99
ACME 2 ton anvil 14.99
ACME Bird seed 10.00
ACME Carrots 2.50
ACME Detonator 13.00
ACME Fuses 3.42
ACME JetPack 1000 35.00

ACME JetPack 2000 55.00
ACME Oil can 8.99
ACME Safe 50.00
ACME Sling 4.49
ACME TNT (1 stick) 2.50
ACME TNT (5 sticks) 10.00
Anvils R Us .5 ton anvil 5.99
Anvils R Us 1 ton anvil 9.99
Anvils R Us 2 ton anvil 14.99
Anvils R Us Bird seed 10.00
Anvils R Us Carrots 2.50
Anvils R Us Detonator 13.00
Anvils R Us Fuses 3.42
Anvils R Us JetPack 1000 35.00
Anvils R Us JetPack 2000 55.00
Anvils R Us Oil can 8.99
Anvils R Us Safe 50.00
Anvils R Us Sling 4.49
Anvils R Us TNT (1 stick) 2.50
Anvils R Us TNT (5 sticks) 10.00
Furball Inc. .5 ton anvil 5.99
Furball Inc. 1 ton anvil 9.99
Furball Inc. 2 ton anvil 14.99
Furball Inc. Bird seed 10.00
Furball Inc. Carrots 2.50
Furball Inc. Detonator 13.00
Furball Inc. Fuses 3.42
Furball Inc. JetPack 1000 35.00
Furball Inc. JetPack 2000 55.00
Furball Inc. Oil can 8.99
Furball Inc. Safe 50.00
Furball Inc. Sling 4.49
Furball Inc. TNT (1 stick) 2.50
Furball Inc. TNT (5 sticks) 10.00
Jet Set .5 ton anvil 5.99
Jet Set 1 ton anvil 9.99
Jet Set 2 ton anvil 14.99
Jet Set Bird seed 10.00
Jet Set Carrots 2.50
Jet Set Detonator 13.00
Jet Set Fuses 3.42
Jet Set JetPack 1000 35.00
Jet Set JetPack 2000 55.00
Jet Set Oil can 8.99
Jet Set Safe 50.00
Jet Set Sling 4.49

129Creating a Join

Jet Set TNT (1 stick) 2.50
Jet Set TNT (5 sticks) 10.00
Jouets Et Ours .5 ton anvil 5.99
Jouets Et Ours 1 ton anvil 9.99
Jouets Et Ours 2 ton anvil 14.99
Jouets Et Ours Bird seed 10.00
Jouets Et Ours Carrots 2.50
Jouets Et Ours Detonator 13.00
Jouets Et Ours Fuses 3.42
Jouets Et Ours JetPack 1000 35.00
Jouets Et Ours JetPack 2000 55.00
Jouets Et Ours Oil can 8.99
Jouets Et Ours Safe 50.00
Jouets Et Ours Sling 4.49
Jouets Et Ours TNT (1 stick) 2.50
Jouets Et Ours TNT (5 sticks) 10.00
LT Supplies .5 ton anvil 5.99
LT Supplies 1 ton anvil 9.99
LT Supplies 2 ton anvil 14.99
LT Supplies Bird seed 10.00
LT Supplies Carrots 2.50
LT Supplies Detonator 13.00
LT Supplies Fuses 3.42
LT Supplies JetPack 1000 35.00
LT Supplies JetPack 2000 55.00
LT Supplies Oil can 8.99
LT Supplies Safe 50.00
LT Supplies Sling 4.49
LT Supplies TNT (1 stick) 2.50
LT Supplies TNT (5 sticks) 10.00

Analysis ▼

As you can see in the preceding output, the Cartesian product is seldom
what you want. The data returned here has matched every product with
every vendor, including products with the incorrect vendor (and even ven-
dors with no products at all).

130 LESSON 14: Joining Tables

CAUTION: Don’t Forget the WHERE Clause

Make sure all your joins have WHERE clauses; otherwise, SQL Server
will return far more data than you want. Similarly, make sure your
WHERE clauses are correct. An incorrect filter condition causes SQL
Server to return incorrect data.

131Creating a Join

TIP: Cross Joins

Sometimes you’ll hear the type of join that returns a Cartesian prod-
uct referred to as a cross join.

In Lesson 13, “Working with Subqueries,” you saw two ways to obtain a
list of customers who ordered products in September of 2005, and both
solutions used subqueries (one using IN and one using EXISTS). Here is a
third solution, this time using an inner join:

Input ▼

SELECT customers.cust_id, customers.cust_name
FROM customers, orders
WHERE DateDiff(month, order_date, ‘2005-09-01’) = 0
AND customers.cust_id = orders.cust_id;

Output ▼

cust_id cust_name
----------- ------------------
10001 Coyote Inc.
10003 Wascals
10004 Yosemite Place

Inner Joins
The join you have been using so far is called an equijoin, a join based on
the testing of equality between two tables. This kind of join is also called
an inner join. In fact, you may use a slightly different syntax for these
joins, specifying the type of join explicitly. The following SELECT state-
ment returns the exact same data as the preceding example:

Input ▼

SELECT vend_name, prod_name, prod_price
FROM vendors INNER JOIN products
ON vendors.vend_id = products.vend_id;

Analysis ▼

The SELECT in this statement is the same as the preceding SELECT state-
ment, but the FROM clause is different. Here, the relationship between the
two tables is part of the FROM clause specified as INNER JOIN. When using
this syntax, the join condition is specified using the special ON clause
instead of a WHERE clause. The actual condition passed to ON is the same as
would be passed to WHERE.

132 LESSON 14: Joining Tables

NOTE: Output Ordering

The WHERE syntax join and the INNER JOIN syntax join return the
exact same results. However, you may notice that the two forms of
joins return results in different orders. Of course, if you specify an
ORDER BY clause, then regardless of the syntax used, the data will
be sorted as specified.

TIP: Which Syntax To Use?

Per the ANSI SQL specification, use of the INNER JOIN syntax is
preferable. Although using the WHERE clause to define joins is indeed
simpler, using explicit join syntax ensures that you will never forget
the join condition, and in some cases it can impact performance, too.

Joining Multiple Tables
SQL imposes no limit to the number of tables that may be joined in a
SELECT statement. The basic rules for creating the join remain the same.
First list all the tables and then define the relationship between each. Here
is an example:

Input ▼

SELECT prod_name, vend_name, prod_price, quantity
FROM orderitems, products, vendors
WHERE products.vend_id = vendors.vend_id
AND orderitems.prod_id = products.prod_id
AND order_num = 20005;

Output ▼

prod_name vend_name prod_price quantity
-------------------- ----------------- ------------ -----------
.5 ton anvil Anvils R Us 5.99 10
1 ton anvil Anvils R Us 9.99 3
TNT (5 sticks) ACME 10.00 5
Bird seed ACME 10.00 1

Analysis ▼

This example displays the items in order number 20005. Order items are
stored in the orderitems table. Each product is stored by its product ID,
which refers to a product in the products table. The products are linked to
the appropriate vendor in the vendors table by the vendor ID, which is
stored with each product record. The FROM clause here lists the three
tables, and the WHERE clause defines both of those join conditions. An
additional WHERE condition is then used to filter just the items for order
20005.

133Creating a Join

CAUTION: Performance Considerations

SQL Server processes joins at runtime, relating each table as speci-
fied. This process can become very resource intensive, so be careful
not to join tables unnecessarily. The more tables you join, the more
performance degrades.

This degradation can be dramatically decreased (perhaps even elimi-
nated) by effectively creating indexes for all foreign key columns.

Now would be a good time to revisit the example from Lesson 13. As you
will recall, this SELECT statement returns a list of customers who ordered
product TNT2:

Input ▼

SELECT cust_name, cust_contact
FROM customers
WHERE cust_id IN (SELECT cust_id

FROM orders
WHERE order_num IN (SELECT order_num

FROM orderitems
WHERE prod_id = ‘TNT2’));

As mentioned in Lesson 13, using subqueries might not always be the
most efficient way to perform complex SELECT operations. So, as
promised, here is the same query using joins:

Input ▼

SELECT cust_name, cust_contact
FROM customers, orders, orderitems
WHERE customers.cust_id = orders.cust_id
AND orderitems.order_num = orders.order_num
AND prod_id = ‘TNT2’;

Output ▼

cust_nam cust_contact
--------------------- ---------------
Coyote Inc. Y Lee
Yosemite Place Y Sam

Analysis ▼

As explained in Lesson 13, returning the data needed in this query
requires the use of three tables. But instead of using them within nested
subqueries, here two joins are used to connect the tables. There are three
WHERE clause conditions here. The first two connect the tables in the join,
and the last one filters the data for product TNT2.

134 LESSON 14: Joining Tables

TIP: It Pays to Experiment

As you can see, there is often more than one way to perform any
given SQL operation. And there is rarely a definitive right or wrong
way. Performance can be affected by the type of operation, the
amount of data in the tables, whether indexes and keys are present,
and a whole slew of other criteria. Therefore, it is often worth experi-
menting with different selection mechanisms to find the one that
works best for you.

Summary
Joins are one of the most important and powerful features in SQL, and
using them effectively requires a basic understanding of relational data-
base design. In this lesson, you learned some of the basics of relational
database design as an introduction to learning about joins. You also
learned how to create an equijoin (also known as an inner join), which is
the most commonly used form of join. In the next lesson, you’ll learn how
to create other types of joins.

135Summary

This page intentionally left blank

LESSON 15

Creating Advanced
Joins

In this lesson, you’ll learn all about additional join types: what they are
and how to use them. You’ll also learn how to use table aliases and how
to use aggregate functions with joined tables.

Using Table Aliases
Back in Lesson 9, “Creating Calculated Fields,” you learned how to use
aliases to refer to retrieved table columns. The syntax to alias a column
looks like this:

Input ▼

SELECT RTrim(vend_name) + ‘ (‘ + RTrim(vend_country) + ‘)’ AS
vend_title
FROM vendors
ORDER BY vend_name;

In addition to using aliases for column names and calculated fields, SQL
also enables you to alias table names. There are two primary reasons to do
this:

. To shorten the SQL syntax

. To enable multiple uses of the same table within a single SELECT
statement

Take a look at the following SELECT statement. It is basically the same
statement as an example used in the previous lesson, but it has been modi-
fied to use aliases:

Input ▼

SELECT cust_name, cust_contact
FROM customers AS c, orders AS o, orderitems AS oi
WHERE c.cust_id = o.cust_id
AND oi.order_num = o.order_num
AND prod_id = ‘TNT2’;

Analysis ▼

You’ll notice that the three tables in the FROM clauses all have aliases.
customers AS c establishes c as an alias for customers, and so on. This
enables you to use the abbreviated c instead of the full text customers. In
this example, the table aliases were used only in the WHERE clause, but
aliases are not limited to just WHERE. You can use aliases in the SELECT list,
the ORDER BY clause, and in any other part of the statement as well.

138 CHAPTER 15: Creating Advanced Joins

NOTE: Execution Time Only

It is worth noting that table aliases are only used during query exe-
cution. Unlike column aliases, table aliases are never returned to
the client.

Using Different Join Types
So far, you have used only simple joins known as inner joins or equijoins.
You’ll now take a look at three additional join types: the self join, the nat-
ural join, and the outer join.

Self Joins
As mentioned earlier, one of the primary reasons to use table aliases is to
be able to refer to the same table more than once in a single SELECT state-
ment. An example will demonstrate this.

Suppose that a problem is found with a product (item ID DTNTR), and you
want to know all the products made by the same vendor so as to deter-
mine whether the problem applies to them too. This query requires that
you first find out which vendor creates item DTNTR and then find which
other products are made by that vendor. The following is one way to
approach this problem:

Input ▼

SELECT prod_id, prod_name
FROM products
WHERE vend_id = (SELECT vend_id

FROM products
WHERE prod_id = ‘DTNTR’);

Output ▼

prod_id prod_name
---------- --------------------
DTNTR Detonator
FB Bird seed
FC Carrots
SAFE Safe
SLING Sling
TNT1 TNT (1 stick)
TNT2 TNT (5 sticks)

Analysis ▼

This first solution uses subqueries. The inner SELECT statement does a
simple retrieval to return the vend_id of the vendor that makes item
DTNTR. That ID is the one used in the WHERE clause of the outer query, so
all items produced by that vendor are retrieved. (You learned all about
subqueries in Lesson 13, “Working with Subqueries.” Refer to that lesson
for more information.)

Now look at the same query using a join:

Input ▼

SELECT p1.prod_id, p1.prod_name
FROM products AS p1, products AS p2
WHERE p1.vend_id = p2.vend_id
AND p2.prod_id = ‘DTNTR’;

139Using Different Join Types

Output ▼

prod_id prod_name
---------- --------------------
DTNTR Detonator
FB Bird seed
FC Carrots
SAFE Safe
SLING Sling
TNT1 TNT (1 stick)
TNT2 TNT (5 sticks)

Analysis ▼

The two tables needed in this query are actually the same table, so the
products table appears in the FROM clause twice. Although this is perfect-
ly legal, any references to table products would be ambiguous because
SQL Server could not know to which instance of the products table you
are referring.

To resolve this problem, table aliases are used. The first occurrence of
products has an alias of p1, and the second has an alias of p2. Now those
aliases can be used as table names. The SELECT statement, for example,
uses the p1 prefix to explicitly state the full name of the desired columns.
If it did not, SQL Server would return an error because there are two
columns named prod_id and prod_name. It cannot know which one you
want (even though, in truth, they are one and the same). The WHERE clause
first joins the tables (by matching vend_id in p1 to vend_id in p2) and
then filters the data by prod_id in the second table to return only the
desired data.

140 CHAPTER 15: Creating Advanced Joins

TIP: Self Joins Instead of Subqueries

Self joins are often used to replace statements using subqueries
that retrieve data from the same table as the outer statement.
Although the end result is the same, sometimes these joins execute
far more quickly than do subqueries. It is usually worth experiment-
ing with both to determine which performs better.

Natural Joins
Whenever tables are joined, at least one column appears in more than one
table (the columns being joined). Standard joins (the inner joins you
learned about in the previous lesson) return all data, even multiple occur-
rences of the same column. A natural join simply eliminates those multi-
ple occurrences so only one of each column is returned.

How does it do this? The answer is, it doesn’t; you do it. A natural join is
a join in which you select only columns that are unique. This is typically
done using a wildcard (SELECT *) for one table and explicit subsets of the
columns for all other tables. The following is an example:

Input ▼

SELECT c.*, o.order_num, o.order_date,
oi.prod_id, oi.quantity, OI.item_price

FROM customers AS c, orders AS o, orderitems AS oi
WHERE c.cust_id = o.cust_id
AND oi.order_num = o.order_num
AND prod_id = ‘FB’;

Analysis ▼

In this example, a wildcard is used for the first table only. All other
columns are explicitly listed so no duplicate columns are retrieved.

The truth is, every inner join you have created thus far is actually a natur-
al join, and you will probably never even need an inner join that is not a
natural join.

Outer Joins
Most joins relate rows in one table with rows in another. But occasionally,
you want to include rows that have no related rows. For example, you
might use joins to accomplish the following tasks:

. Count how many orders each customer placed, including cus-
tomers who have yet to place an order.

141Using Different Join Types

. List all products with order quantities, including products not
ordered by anyone.

. Calculate average sale sizes, taking into account customers who
have not yet placed an order.

In each of these examples, the join includes table rows that have no asso-
ciated rows in the related table. This type of join is called an outer join.

The following SELECT statement is a simple inner join. It retrieves a list of
all customers and their orders:

Input ▼

SELECT customers.cust_id, orders.order_num
FROM customers INNER JOIN orders
ON customers.cust_id = orders.cust_id;

Outer join syntax is similar. To retrieve a list of all customers, including
those who have placed no orders, you can do the following:

Input ▼

SELECT customers.cust_id, orders.order_num
FROM customers LEFT OUTER JOIN orders
ON customers.cust_id = orders.cust_id;

Output ▼

cust_id order_num
----------- -----------
10001 20005
10001 20009
10002 NULL
10003 20006
10004 20007
10005 20008

142 CHAPTER 15: Creating Advanced Joins

Analysis ▼

Like the inner join shown in the previous lesson, this SELECT statement
uses the keywords OUTER JOIN to specify the join type (instead of specifying
it in the WHERE clause). But unlike inner joins, which relate rows in both
tables, outer joins also include rows with no related rows. When using
OUTER JOIN syntax, you must use the RIGHT or LEFT keyword to specify
the table from which to include all rows (RIGHT for the one on the right of
OUTER JOIN and LEFT for the one on the left). The previous example uses
LEFT OUTER JOIN to select all the rows from the table on the left in the
FROM clause (the customers table). To select all the rows from the table on
the right, you use a RIGHT OUTER JOIN, as shown in this example:

Input ▼

SELECT customers.cust_id, orders.order_num
FROM customers RIGHT OUTER JOIN orders
ON orders.cust_id = customers.cust_id;

143Using Different Join Types

TIP: Outer Join Types

There are two basic forms of outer joins: the left outer join and the
right outer join. The only difference between them is the order of the
tables they are relating. In other words, a left outer join can be
turned into a right outer join simply by reversing the order of the
tables in the FROM or WHERE clause. As such, the two types of outer
joins can be used interchangeably, and the decision about which one
is used is based purely on convenience.

144 CHAPTER 15: Creating Advanced Joins

NOTE: Non-ANSI Outer Joins

In the previous lesson, you learned two ways to write an inner join:
using a simplified WHERE clause and using INNER JOIN syntax. In
this lesson, you’ve seen the ANSI-style OUTER JOIN syntax but not a
simplified WHERE clause outer join.

The truth is there is a simplified syntax for outer joins using a WHERE
clause. An example is provided here so that you’ll know what it is if
ever you run into it (and you’ll also learn why you should avoid using
this syntax).

Here’s the simplified outer join:
SELECT customers.cust_id, orders.order_num
FROM customers, orders
WHERE customers.cust_id *= orders.cust_id;

The *= instructs SQL Server to retrieve all the rows from the first
table (customers, the table nearer the *) and only related rows from
the second table (orders, the table nearer the =). Therefore, *= cre-
ates a left outer join. Similarly, =* would create a right outer join
(because * is on the right).

As stated previously, it is a simpler syntax. But alas, support for this
form of syntax is not part of the ANSI standard, and will not be sup-
ported in future versions of SQL Server. It is supported in SQL
Server 6.x, SQL Server 7, and SQL Server 2000, and can be sup-
ported in SQL Server 2005 (support is disabled by default, but it
can be enabled using sp_dbcmptlevel to enable backward compati-
bility), but will not be supported in the future.

As such, so as to preclude future compatibility issues, the simplified
WHERE form of outer join should be avoided. This does not apply to
the simplified inner join syntax (shown in the last lesson), which
Microsoft has not announced any intention of dropping support for.

There is one other form of outer join worth noting, although you will like-
ly rarely find a use for it. The FULL OUTER JOIN is used to retrieve the
related rows from both tables, as well as the unrelated rows from each.
(These will have NULL values for the unrelated columns in the other table.)
The syntax for a FULL OUTER JOIN is the same as the previously shown
outer joins, obviously substituting RIGHT and LEFT for FULL.

Using Joins with Aggregate
Functions
As you learned in Lesson 11, “Summarizing Data,” aggregate functions
are used to summarize data. Although all the examples of aggregate func-
tions thus far only summarized data from a single table, these functions
can also be used with joins.

To demonstrate this, let’s look at an example. You want to retrieve a list of
all customers and the number of orders that each has placed. The follow-
ing code uses the Count() function to achieve this:

Input ▼

SELECT customers.cust_name,
customers.cust_id,
Count(orders.order_num) AS num_ord

FROM customers INNER JOIN orders
ON customers.cust_id = orders.cust_id
GROUP BY customers.cust_name,

customers.cust_id;

Output ▼

cust_name cust_id num_ord
----------------------- ----------- -----------
Coyote Inc. 10001 2
Wascals 10003 1
Yosemite Place 10004 1
E Fudd 10005 1

Analysis ▼

This SELECT statement uses INNER JOIN to relate the customers and
orders tables to each other. The GROUP BY clause groups the data by cus-
tomer, and so the function call Count(orders.order_num) counts the
number of orders for each customer and returns it as num_ord.

Aggregate functions can be used just as easily with other join types. See
the following example:

145Using Joins with Aggregate Functions

Input ▼

SELECT customers.cust_name,
customers.cust_id,
Count(orders.order_num) AS num_ord

FROM customers LEFT OUTER JOIN orders
ON customers.cust_id = orders.cust_id
GROUP BY customers.cust_name,

customers.cust_id;

Output ▼

cust_name cust_id num_ord
----------------------- ----------- -----------
Coyote Inc. 10001 2
Mouse House 10002 0
Wascals 10003 1
Yosemite Place 10004 1
E Fudd 10005 1

Analysis ▼

This example uses a left outer join to include all customers, even those
who have not placed any orders. The results show that customer Mouse
House (with no orders) is also included this time.

146 CHAPTER 15: Creating Advanced Joins

NOTE: Null Value Elimination Warning

Depending on the database client you are using, you may have seen
the following warning generated by the previous T-SQL statement:
Warning: Null value is eliminated by an aggregate or other
SET operation.

This is not an error message; it is just an informational warning, and
it is telling you that a row (in this case, Mouse House) should have
returned NULL because there are no orders. However, because an
aggregate function was used (the Count() function), that NULL was
converted to a number (in this case, 0).

Using Joins and Join Conditions
Before wrapping up this two-lesson discussion on joins, it is worthwhile
to summarize some key points regarding joins and their use:

. Pay careful attention to the type of join being used. More often
than not, you’ll want an inner join, but there are often valid uses
for outer joins too.

. Make sure you use the correct join condition, or you’ll return
incorrect data.

. Make sure you always provide a join condition, or you’ll end up
with the Cartesian product.

. You may include multiple tables in a join and even have differ-
ent join types for each. Although this is legal and often useful,
make sure you test each join separately before testing them
together. This makes troubleshooting far simpler.

Summary
This lesson was a continuation of the previous lesson on joins. This lesson
started by teaching you how and why to use aliases and then continued
with a discussion on different join types and the various forms of syntax
used with each. You also learned how to use aggregate functions with
joins, and some important do’s and don’ts to keep in mind when working
with joins.

147Summary

This page intentionally left blank

LESSON 16

Combining Queries

In this lesson, you’ll learn how to use the UNION operator to combine mul-
tiple SELECT statements into one result set.

Understanding Combined Queries
Most SQL queries contain a single SELECT statement that returns data
from one or more tables. T-SQL also enables you to perform multiple
queries (multiple SELECT statements) and return the results as a single
query result set. These combined queries are usually known as unions or
compound queries.

There are basically two scenarios in which you’d use combined queries:

. To return similarly structured data from different tables in a sin-
gle query

. To perform multiple queries against a single table, returning the
data as one query

TIP: Combining Queries and Multiple WHERE Conditions

For the most part, combining two queries to the same table accom-
plishes the same thing as a single query with multiple WHERE clause
conditions. In other words, any SELECT statement with multiple
WHERE clauses can also be specified as a combined query, as you’ll
see in the section that follows. However, the performance of each of
the two techniques can vary based on the queries used. As such, it
is always good to experiment to determine which is preferable for
specific queries.

Creating Combined Queries
SQL queries are combined using the UNION operator. Using UNION, you
can specify multiple SELECT statements and combine their results into a
single result set.

Using UNION
Using UNION is simple enough. All you do is specify each SELECT state-
ment and place the keyword UNION between each.

Let’s look at an example. You need a list of all products costing 5 or less.
You also want to include all products made by vendors 1001 and 1002,
regardless of price. Of course, you can create a WHERE clause that will do
this, but this time you’ll use a UNION instead.

As just explained, creating a UNION involves writing multiple SELECT state-
ments. First look at the individual statements:

Input ▼

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5;

Output ▼

vend_id prod_id prod_price
----------- ---------- ----------
1003 FC 2.50
1002 FU1 3.42
1003 SLING 4.49
1003 TNT1 2.50

Input ▼

SELECT vend_id, prod_id, prod_price
FROM products
WHERE vend_id IN (1001,1002);

150 LESSON 16: Combining Queries

Output ▼

vend_id prod_id prod_price
----------- ---------- ----------
1001 ANV01 5.99
1001 ANV02 9.99
1001 ANV03 14.99
1002 FU1 3.42
1002 OL1 8.99

Analysis ▼

The first SELECT retrieves all products with a price of no more than 5. The
second SELECT uses IN to find all products made by vendors 1001 and
1002.

To combine these two statements, do the following:

Input ▼

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5
UNION
SELECT vend_id, prod_id, prod_price
FROM products
WHERE vend_id IN (1001,1002);

Output ▼

vend_id prod_id prod_price
----------- ---------- ----------
1001 ANV01 5.99
1001 ANV02 9.99
1001 ANV03 14.99
1002 FU1 3.42
1002 OL1 8.99
1003 FC 2.50
1003 SLING 4.49
1003 TNT1 2.50

151Creating Combined Queries

Analysis ▼

The preceding statements are made up of both of the previous SELECT
statements separated by the UNION keyword. UNION instructs SQL Server
to execute both SELECT statements and combine the output into a single
query result set.

As a point of reference, here is the same query using multiple WHERE
clauses instead of a UNION:

Input ▼

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5
OR vend_id IN (1001,1002);

In this simple example, the UNION might actually be more complicated
than using a WHERE clause. But with more complex filtering conditions, or
if the data were being retrieved from multiple tables (not just a single
table), the UNION could have made the process much simpler.

UNION Rules
As you can see, unions are very easy to use. But a few rules govern exact-
ly which can be combined:

. A UNION must be composed of two or more SELECT statements,
each separated by the keyword UNION. (Therefore, if you were
combining four SELECT statements, you would use three UNION
keywords.)

. Each query in a UNION must contain the same columns, expres-
sions, or aggregate functions, and they must be listed in the same
order. (Other DBMSs do not impose this restriction and allow
columns to be in any order as long as they are all present).

. Column datatypes must be compatible: They need not be the
exact same type, but they must be of a type that SQL Server can
implicitly convert (for example, different numeric types or dif-
ferent date types).

152 LESSON 16: Combining Queries

Aside from these basic rules and restrictions, unions can be used for any
data retrieval tasks.

Including or Eliminating Duplicate Rows
Go back to the preceding section titled “Using UNION” and look at the
sample SELECT statements used. You’ll notice that when they’re executed
individually, the first SELECT statement returns four rows, and the second
SELECT statement returns five rows. However, when the two SELECT state-
ments are combined with a UNION, only eight rows are returned, not nine.

The UNION automatically removes any duplicate rows from the query
result set (in other words, it behaves just as multiple WHERE clause condi-
tions in a single SELECT would). Because vendor 1002 creates a product
that costs less than 5, that row was returned by both SELECT statements.
When the UNION was used, the duplicate row was eliminated.

This is the default behavior of UNION, but you can change this if you so
desire. If you do, in fact, want all occurrences of all matches returned, you
can use UNION ALL instead of UNION.

Look at the following example:

Input ▼

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5
UNION ALL
SELECT vend_id, prod_id, prod_price
FROM products
WHERE vend_id IN (1001,1002);

Output ▼

vend_id prod_id prod_price
----------- ---------- ----------
1003 FC 2.50
1002 FU1 3.42
1003 SLING 4.49
1003 TNT1 2.50
1001 ANV01 5.99

153Creating Combined Queries

1001 ANV02 9.99
1001 ANV03 14.99
1002 FU1 3.42
1002 OL1 8.99

Analysis ▼

Using UNION ALL, SQL Server does not eliminate duplicates. Therefore,
the preceding example returns nine rows, one of them occurring twice.

154 LESSON 16: Combining Queries

TIP: UNION Versus WHERE

The beginning of this lesson said that UNION almost always accom-
plishes the same thing as multiple WHERE conditions. UNION ALL is
the form of UNION that accomplishes what cannot be done with
WHERE clauses. If you do, in fact, want all occurrences of matches
for every condition (including duplicates), you must use UNION ALL
and not WHERE.

Sorting Combined Query Results
SELECT statement output is sorted using the ORDER BY clause. When com-
bining queries with a UNION, you may use only one ORDER BY clause, and
it must occur after the final SELECT statement. There is very little point in
sorting part of a result set one way and part another way; therefore, multi-
ple ORDER BY clauses are not allowed.

The following example sorts the results returned by the previously used
UNION:

Input ▼

SELECT vend_id, prod_id, prod_price
FROM products
WHERE prod_price <= 5
UNION
SELECT vend_id, prod_id, prod_price
FROM products
WHERE vend_id IN (1001,1002)
ORDER BY vend_id, prod_price;

Output ▼

vend_id prod_id prod_price
----------- ---------- ----------
1001 ANV01 5.99
1001 ANV02 9.99
1001 ANV03 14.99
1002 FU1 3.42
1002 OL1 8.99
1003 FC 2.50
1003 TNT1 2.50
1003 SLING 4.49

Analysis ▼

This UNION takes a single ORDER BY clause after the final SELECT state-
ment. Even though the ORDER BY appears to only be a part of that last
SELECT statement, SQL Server will in fact use it to sort all the results
returned by all the SELECT statements.

155Summary

NOTE: Combining Different Tables

For the sake of simplicity, all the examples in this lesson combined
queries using the same table. However, everything you learned here
also applies to using UNION to combine queries of different tables.

Summary
In this lesson, you learned how to combine SELECT statements with the
UNION operator. Using UNION, you can return the results of multiple
queries as one combined query, either including or excluding duplicates.
The use of UNION can greatly simplify complex WHERE clauses and retriev-
ing data from multiple tables.

This page intentionally left blank

LESSON 17

Full-Text Searching

In this lesson, you’ll learn how to use SQL Server’s full-text searching
capabilities to perform sophisticated data querying and selection.

Understanding Full-Text
Searching

NOTE: SQL Server 2005 Only

This lesson covers full-text searching using SQL Server 2005.
Previous versions of SQL Server do support full-text searching, but
SQL Server 2005 changed and enhanced this feature so significant-
ly that much of the content covered in this lesson won’t apply to
those earlier versions.

In Lesson 8, “Using Wildcard Filtering,” you were introduced to the LIKE
keyword, which is used to match text (and partial text) via wildcard oper-
ators. Using LIKE, it is possible to locate rows that contain specific values
or parts of values, regardless of the location of those values within row
columns.

But as useful as these search mechanisms are, they have several very
important limitations:

. Performance: Wildcard matching usually requires that SQL
Server try matching each and every row in a table (and table
indexes are rarely of use in these searches). As such, these
searches can be very time-consuming as the number of rows to
be searched grows.

. Explicit control: Using wildcard matching, it is very difficult
(and not always possible) to explicitly control what is and what
is not matched. An example of this is a search specifying a word
that must be matched, a word that must not be matched, and a
word that may or may not be matched depending on whether the
first word is indeed matched.

. Intelligent results: Although wildcard-based searching provides
for very flexible searching, it does not provide an intelligent way
to select results. For example, searching for a specific word
would return all rows that contain that word, but not distinguish
between rows that contain a single match and those that contain
multiple matches (ranking them as potentially better matches).
Similarly, searches for a specific word would not find rows that
do not contain that word but do contain other related words.

All of these limitations and more are addressed by full-text searching.
When full-text searching is used, SQL Server does not need to look at
each row, analyzing and processing each word individually. Rather, an
index of the words (in specified columns) is created by SQL Server, and
searches can be made against those words. SQL Server can thus quickly
and efficiently determine which words match (which rows contain them),
which don’t, how often they match, and so on.

Setting Up Full-Text Searching
Here’s a list of requirements to perform full-text searches:

. Support for full-text searching must be enabled for the relevant
database.

. A catalog must be defined (this is where full-text data is stored).

. A full-text index must be created for the tables and columns to
be indexed.

After indexing, you can use SELECT with the FREETEXT and CONTAINS

predicates to actually perform the searches.

158 LESSON 17: Full-Text Searching

Enabling Full-Text Searching Support
Once a database has been created, support for full text must be enabled
before any full-text operations can be performed. To enable full-text sup-
port, use the sp_fulltext_database stored procedure. This stored proce-
dure updates the currently selected database, so be sure to USE the correct
database before issuing this statement:

Input ▼

EXEC sp_fulltext_database ‘enable’;

Analysis ▼

sp_fulltext_database accepts a parameter specifying whether to enable
or disable full-text support.

159Setting Up Full-Text Searching

NOTE: Using the New Database Dialog

If you use the interactive New Database dialog to create your data-
base, you can check the Use Full-Text Indexing box, which causes
the previously mentioned stored procedure to be automatically
executed.

TIP: Not Sure If Full Text Is Enabled?

If you don’t know whether full-text support is enabled, just run the
stored procedure anyway. If full-text support is not enabled, the
stored procedure will enable it. If full-text support is already enabled,
the stored procedure will do nothing at all.

Creating a Full-Text Catalog
As already explained, SQL Server stores full-text data in a catalog (a file
that needs to be created). A single catalog can be used for multiple tables
and indexes, so feel free to use an existing catalog if one exists.
Alternatively, just create a catalog using CREATE FULLTEXT CATALOG:

Input ▼

CREATE FULLTEXT CATALOG catalog_crashcourse;

Analysis ▼

Here, a catalog named catalog_crashcourse is created in the default cat-
alog location. To specify the actual file location, the IN PATH attribute
could have been specified.

Creating a Full-Text Index
Now that a catalog has been created, you can define the actual full-text
indexes. Indexes are created using CREATE FULLTEXT INDEX, as seen here:

Input ▼

CREATE FULLTEXT INDEX ON productnotes(note_text)
KEY INDEX pk_productnotes
ON catalog_crashcourse;

Analysis ▼

This creates a full-text index on table productnotes, indexing the
note_text column. The key with which to uniquely identify rows is
required, so KEY INDEX is used to provide the name of the table’s primary
key, pk_productnotes. Finally, the ON clause specifies the catalog to be
used to store full-text data, and here the just created catalog is used.

More than one column may be indexed if needed. To do this, simply spec-
ify the column names (comma delimited).

160 LESSON 17: Full-Text Searching

NOTE: Defining a Default Catalog

When CREATE FULLTEXT CATALOG is used to create a new catalog,
the optional AS DEFAULT clause may be specified. Doing so makes
the newly created catalog the default to be used for subsequently
created full-text indexes, which would therefore mean that the final
ON clause in CREATE FULLTEXT INDEX could be omitted.

Now that the full-text index has been created, any existing table data is
indexed, and any data INSERT, UPDATE, and DELETE operations performed
against table productnotes will force that index to be updated.

161Setting Up Full-Text Searching

TIP: Don’t Use Full-Text Indexes when Importing Data

Updating indexes takes time, not a lot of time, but time nonethe-
less. And updating full-text indexes takes even longer. If you are
importing data into a new table, you should not enable FULLTEXT
indexing at that time. Rather, first import all of the data, and then
modify the table to define FULLTEXT. This makes for a much faster
data import (and the total time needed to index all data will be less
than the sum of the time needed to index each row individually).

Managing Catalogs and Indexes
Catalogs and indexes may be updated using ALTER FULLTEXT and dropped
using DROP FULLTEXT. In practice, these statements are rarely used, with
one exception. If the catalog or index becomes corrupt (returning incon-
sistent results) or is too slow, it may benefit from being rebuilt. You can
do this as follows:

Input ▼

ALTER FULLTEXT CATALOG catalog_crashcourse REBUILD;

Analysis ▼

This statement deletes and rebuilds the catalog indexes, effectively forcing
a complete reindexing.

If you would like to learn more about existing catalogs and indexes, a
series of system views can be used:

Input ▼

SELECT * FROM sys.fulltext_catalogs;

Analysis ▼

This statement returns information about the currently used catalog,
including physical file location and whether or not it is marked as the
default catalog.

Input ▼

SELECT * FROM sys.fulltext_indexes;

Analysis ▼

This statement returns information about defined indexes, including the
ID of the catalog used, whether or not the indexes are updated automati-
cally, and when the last update started and ended.

162 LESSON 17: Full-Text Searching

TIP: The FulltextCatalogProperty() Function

A system function named FulltextCatalogProperty() can be
used to obtain information about catalogs.
FulltextCatalogProperty() accepts a catalog name and the
property to be checked. The two most important properties are
IndexSize and PopulateStatus (which lets you know if the index is
up to date, currently being built, and more).

Performing Full-Text Searches
Once data has been indexed, full-text searches may be performed using
two predicates:

. FREETEXT performs simple searches, matching by meaning as
opposed to an exact text match.

. CONTAINS performs searches for words or phrases, taking into
account proximity, derived words, and synonyms.

Both FREETEXT and CONTAINS are used in SELECT statement WHERE clauses.

Searching Using FREETEXT
FREETEXT is used to search for rows that contain words or phrases that
might mean the same as (or are similar to) a specified phrase.

Let’s look at an example. The following is a simple LIKE wildcard
SELECT:

Input ▼

SELECT note_id, note_text
FROM productnotes
WHERE note_text LIKE ‘%rabbit food%’;

Analysis ▼

This statement looks for the phrase rabbit food within column
note_text. No rows are returned because that phrase does not appear in
any rows.

Now the same search using FREETEXT full-text searching:

Input ▼

SELECT note_id, note_text
FROM productnotes
WHERE FREETEXT(note_text, ‘rabbit food’);

Output ▼

note_id note_text
---------- ---
104 Quantity varies, sold by the sack load. All

guaranteed to be bright and orange, and suitable
for use as rabbit bait.

110 Customer complaint: rabbit has been able to detect
trap, food apparently less effective now.

Analysis ▼

FREETEXT(note_text, ‘rabbit food’) means “perform a FREETEXT
lookup on column note_text looking for anything that could mean

163Performing Full-Text Searches

rabbit food.” Two rows were retrieved, one containing both the words
rabbit and food, but not as a joined phrase, and the other containing rabbit
and a context that infers food, even though the word food is not actually
present.

As you can see, FREETEXT full-text searching is very easy to use.
Unfortunately, that simplicity comes at a cost, and FREETEXT searches lack
the more sophisticated control you may need from full-text searching.
This is why there is another predicate, named CONTAINS.

164 LESSON 17: Full-Text Searching

NOTE: Support for Other Languages

By default, FREETEXT uses the default catalog language to deter-
mine which words to index and which to ignore (words such as it
and the are typically ignored because their frequency would distort
results). To specify an alternate language, simply pass that language
name or ID as a third parameter to FULLTEXT(). The specified lan-
guage must be one of those listed in the sys.syslanguages sys-
tem table. You can list the languages using the following statement:
SELECT * FROM sys.syslanguages;

Searching Using CONTAINS
CONTAINS is used to search for rows that contain words, phrases, partial
phrases, words with the same stem, proximity searches, synonyms (using
a thesaurus lookup), and more.

Let’s start with a simple example:

Input ▼

SELECT note_id, note_text
FROM productnotes
WHERE CONTAINS(note_text, ‘handsaw’);

Output ▼

note_id note_text
----------- ---
112 Customer complaint: Circular hole in safe floor

can apparently be easily cut with handsaw.

Analysis ▼

WHERE CONTAINS(note_text, ‘handsaw’) means “find the word handsaw
in column note_text.”

165Performing Full-Text Searches

TIP: CONTAINS or LIKE?

WHERE CONTAINS(note_text, ‘handsaw’) is functionality identical
to LIKE note_text = ‘%handsaw%’. However, the CONTAINS search
will typically be far quicker, especially as the size of your tables
increases.

CONTAINS also supports the use of wildcards, as seen here:

Input ▼

SELECT note_id, note_text
FROM productnotes
WHERE CONTAINS(note_text, ‘“anvil*”’);

Output ▼

note_id note_text
----------- ---
108 Multiple customer returns, anvils failing to drop

fast enough or falling backwards on purchaser.
Recommend that customer considers using heavier
anvils.

Analysis ▼

‘“anvil*”’ means “match any word that starts with anvil.” Note that
unlike LIKE, full-text searching uses * as the wildcard character (instead
of %). Wildcards may be used at the beginning or end of a string.

166 LESSON 17: Full-Text Searching

CAUTION: Watch Those Quotes

The search term in the last example was ‘“anvil*”’, with the
usual single quotes around “anvil*” (double quotes). When you
pass simple text to CONTAINS, that text is then enclosed within sin-
gle quotes. When you’re passing wildcards, each search phrase
must be enclosed within double quotes inside those outer single
quotes. Failing to do this will likely cause your searches to return no
matches.

CONTAINS also supports the Boolean operators AND, OR, and NOT. Here are a
couple examples:

Input ▼

SELECT note_id, note_text
FROM productnotes
WHERE CONTAINS(note_text, ‘safe AND handsaw’);

Output ▼

note_id note_text
----------- ---
112 Customer complaint: Circular hole in safe floor

can apparently be easily cut with handsaw.

Analysis ▼

‘safe AND handsaw’ means “match only rows that contain both safe and
handsaw.”

Input ▼

SELECT note_id, note_text
FROM productnotes
WHERE CONTAINS(note_text, ‘rabbit AND NOT food’);

Output ▼

note_id note_text
----------- ---
104 Quantity varies, sold by the sack load. All

guaranteed to be bright and orange, and
suitable for use as rabbit bait.

Analysis ▼

‘rabbit AND NOT food’ means “match only rows that contain the word
rabbit and do not contain the word food.”

When searching through extremely long text, you have a greater likeli-
hood of matches being found if search terms are near each other in the
saved data. A simple AND search matches terms anywhere in the text, but
NEAR can be used to instruct the full-text search engine to only match
terms when they are close together. Here is an example:

Input ▼

SELECT note_id, note_text
FROM productnotes
WHERE CONTAINS(note_text, ‘detonate NEAR quickly’);

Output ▼

note_id note_text
----------- ---
105 Included fuses are short and have been known to

detonate too quickly for some customers. Longer
fuses are available (item FU1) and should be
recommended.

Analysis ▼

‘detonate NEAR quickly’ means “match only rows that contain the
words detonate and quickly near each other.”

167Performing Full-Text Searches

Sometimes you may want to match a word that is part of the same family
(based on the same stem). For example, if you were searching for vary,
you’d also want to match varies. Obviously, a wildcard of vary* could
not help here, and using var* would likely match too many false posi-
tives. This is where inflectional matching helps. Here is an example:

Input ▼

SELECT note_id, note_text
FROM productnotes
WHERE CONTAINS(note_text, ‘FORMSOF(INFLECTIONAL, vary)’);

Output ▼

note_id note_text
----------- --
104 Quantity varies, sold by the sack load. All

guaranteed to be bright and orange, and suitable
for use as rabbit bait.

Analysis ▼

‘FORMSOF(INFLECTIONAL, vary)’ instructs the full-text engine to look for
any words that share the same stem as the specified word (in this case,
vary). As such, the row containing the word varies was matched and
retrieved.

168 LESSON 17: Full-Text Searching

NOTE: THESAURUS Searches

FORMSOF() also supports THESAURUS searches, where words can
match synonyms. To use this functionality, you must first populate
an XML thesaurus file with words and their synonyms.

TIP: Mixing Search Types

So as to keep them simple and clear, the examples here use wild-
cards, Boolean operators, proximity searches, or inflectional search-
es. In truth, you can mix and match any of these as needed.

Ranking Search Results
When you perform a full-text search, the full-text engine uses sophisticat-
ed algorithms to attempt to locate what you are looking for. It can also
assign a rank value to the match, the closer the match, the higher the
assigned rank.

Ranks are accessed via ranking functions, FULLTEXT searches are ranked
using the function FULLTEXTTABLE(), and CONTAINS searches are ranked
using function CONTAINSTABLE(). Both of these functions are used the
same way, and both accept search patterns (the same search patterns
already explained in this lesson).

Here is an example:

Input ▼

SELECT f.rank, note_id, note_text
FROM productnotes,

FREETEXTTABLE(productnotes, note_text, ‘rabbit food’) f
WHERE productnotes.note_id=f.[key]
ORDER BY rank DESC;

Output ▼

rank note_id note_text
---------- ---------- -------------------------------------
256 110 Customer complaint: rabbit has been

able to detect trap, food apparently
less effective now.

45 104 Quantity varies, sold by the sack
load. All guaranteed to be bright and
orange, and suitable for use as
rabbit bait.

Analysis ▼

This example performs a FREETEXT-type search, but instead of filtering
using the WHERE clause, it uses the FREETEXTTABLE() function and pro-
vides a search pattern instructing the full-text engine to match any rows
that contain words meaning rabbit and food. FREETEXTTABLE() returns a

169Performing Full-Text Searches

table that is given an alias of f (to be able to refer to it in column selec-
tions and the join). This table contains a column named key, which
matches the primary key of the table that was indexed (productnotes in
this example), and a column named rank, which is the rank value
assigned. The first row has a rank of 256 because it is a better match (it
actually contains both search words), whereas the second row has a lower
rank of 45 because it was a lesser match.

This technique can be used with both FULLTEXT and CONTAINS matches,
but if you are performing a CONTAINS match, the function CONTAINSTABLE()
should be used instead.

170 LESSON 17: Full-Text Searching

NOTE: Assigning Search Term Weights

The rankings assigned in this example assume that all words are
equally important and relevant. If this is not the case, and some
words are more important than others, then the ISABOUT() function
can be used to assign weight values to specific words. The full-text
search engine will then use these weight values when determining
rankings.

Summary
In this lesson, you learned why full-text searching is used and how to use
the T-SQL FREETEXT() and CONTAINS() functions to perform these search-
es. You also learned how to use Boolean operators, wildcards, proximity
searches, inflectional matches, and search rankings.

LESSON 18

Inserting Data

In this lesson, you will learn how to insert data into tables using the SQL
INSERT statement.

Understanding Data Insertion
SELECT is undoubtedly the most frequently used SQL statement (which is
why the past 14 lessons were dedicated to it). But there are three other
frequently used SQL statements you should learn. The first one is INSERT.
(You’ll get to the other two in the next lesson.)

As its name suggests, INSERT is used to insert (add) rows to a database
table. INSERT can be used in several ways:

. To insert a single complete row

. To insert a single partial row

. To insert multiple rows

. To insert the results of a query

You’ll now look at examples of each of these.

TIP: INSERT and System Security

Use of the INSERT statement can be disabled per table or per user
using SQL Server security, as will be explained in Lesson 29,
“Managing Security.”

Inserting Complete Rows
The simplest way to insert data into a table is to use the basic INSERT syn-
tax, which requires that you specify the table name and the values to be
inserted into the new row. Here is an example of this (don’t actually try
this example because it will fail):

Input ▼

INSERT INTO Customers
VALUES(10006,

‘Pep E. LaPew’,
‘100 Main Street’,
‘Los Angeles’,
‘CA’,
‘90046’,
‘USA’,
NULL,
NULL);

172 LESSON 18: Inserting Data

NOTE: No Output

INSERT statements usually generate no output.

Analysis ▼

The preceding example inserts a new customer into the customers table.
The data to be stored in each table column is specified in the VALUES
clause, and a value must be provided for every column. If a column has
no value (for example, the cust_contact and cust_email columns), the
NULL value should be used (assuming the table allows no value to be spec-
ified for that column). The columns must be populated in the order in
which they appear in the table definition.

So why would this INSERT statement fail as is? cust_id is an identity
field. This means that values are assigned automatically by SQL Server,
and each time a new row is added, the next unused number in sequence is
automatically used and saved. By default, identity fields do not allow you
to explicitly specify values; SQL Server gets to do this itself.

173Inserting Complete Rows

TIP: Manually Specifying Identity Field Values

If you really do need to manually specify the value of an identity
field, you can do so if you first issue the statement SET IDENTITY_
INSERT = ON. Assuming that the value specified is valid (and not
already in use), subsequent inserts will auto-increment using this
new value.

Even when you’re not using identity fields, this previous form of INSERT
is not at all safe and should generally be avoided at all costs. This type of
statement is highly dependent on the order in which the columns are
defined in the table. It also depends on information about that order being
readily available. Even if it is available, there is no guarantee the columns
will be in the exact same order the next time the table is reconstructed.
Therefore, writing SQL statements that depend on specific column order-
ing is very unsafe. If you do so, something will inevitably break at some
point.

The safer (and, unfortunately, more cumbersome) way to write the INSERT
statement is as follows:

Input ▼

INSERT INTO customers(cust_name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country,
cust_contact,
cust_email)

VALUES(‘Pep E. LaPew’,
‘100 Main Street’,
‘Los Angeles’,
‘CA’,
‘90046’,
‘USA’,
NULL,
NULL);

Analysis ▼

This example does the exact same thing as the previous INSERT statement,
but this time the column names are explicitly stated in parentheses after
the table name. When the row is inserted, SQL Server will match each
item in the columns list with the appropriate value in the VALUES list. The
first entry in VALUES corresponds to the first specified column name. The
second value corresponds to the second column name, and so on.

Because column names are provided, the VALUES must match the specified
column names in the order in which they are specified, and not necessari-
ly in the order the columns appear in the actual table. The advantage of
this is that, even if the table layout changes, the INSERT statement will still
work correctly. You’ll notice that cust_id was not specified; unneeded
columns can simply be omitted from both the columns list and the VALUES
list.

The following INSERT statement populates all the row columns (just as
before), but it does so in a different order. Because the column names are
specified, the insertion will work correctly:

Input ▼

INSERT INTO customers(cust_name,
cust_contact,
cust_email,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country)

VALUES(‘Pep E. LaPew’,
NULL,
NULL,
‘100 Main Street’,
‘Los Angeles’,
‘CA’,
‘90046’,
‘USA’);

174 LESSON 18: Inserting Data

175Inserting Complete Rows

TIP: Always Use a Columns List

As a rule, never use INSERT without explicitly specifying the column
list. This will greatly increase the probability that your SQL will con-
tinue to function in the event that table changes occur.

CAUTION: Use VALUES Carefully

Regardless of the INSERT syntax being used, the correct number of
VALUES must be specified. If no column names are provided, a value
must be present for every table column. If columns names are pro-
vided, a value must be present for each listed column. If none is
present, an error message will be generated, and the row will not be
inserted.

Using this syntax, you can also omit columns. This means you only pro-
vide values for some columns, but not for others. (You’ve actually already
seen an example of this; cust_id was omitted when column names were
explicitly listed.)

CAUTION: Omitting Columns

You may omit columns from an INSERT operation if the table defini-
tion so allows. One of the following conditions must exist:

. The column is defined as allowing NULL values (no value at all).

. A default value is specified in the table definition. This means
the default value will be used if no value is specified.

If you omit a value from a table that does not allow NULL values and
does not have a default, SQL Server generates an error message,
and the row is not inserted.

TIP: INTO Is Optional

In T-SQL the keyword INTO is optional, so INSERT INTO customers
can be shorted to INSERT customers. In practice, so as to ensure
maximum portability, INTO should always be specified.

Inserting Multiple Rows
INSERT inserts a single row into a table. But what if you need to insert
multiple rows? The basic INSERT statement only inserts a single row at a
time, so you would need to use multiple INSERT statements. You could
possibly submit them all at once, each terminated by a semicolon, like
this:

Input ▼

INSERT INTO customers(cust_name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country)

VALUES(‘Pep E. LaPew’,
‘100 Main Street’,
‘Los Angeles’,
‘CA’,
‘90046’,
‘USA’);

INSERT INTO customers(cust_name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country)

VALUES(‘M. Martian’,
‘42 Galaxy Way’,
‘New York’,
‘NY’,
‘11213’,
‘USA’);

176 LESSON 18: Inserting Data

NOTE: One Set of VALUES Only

Unlike some other DBMSs, SQL Server does not support multiple
VALUES clauses for a single INSERT statement.

Inserting Retrieved Data
INSERT is generally used to add a row to a table using specified values.
Another form of INSERT can be used to insert the result of a SELECT state-
ment into a table. This is known as INSERT SELECT, and, as its name sug-
gests, it is made up of an INSERT statement and a SELECT statement.

Suppose you want to merge a list of customers from another table into
your customers table. Instead of reading one row at a time and inserting it
with INSERT, you can do the following:

177Inserting Retrieved Data

NOTE: Instructions Needed for the Next Example

The following example imports data from a table named custnew
into the customers table. To try this example, create and populate
the custnew table first. The format of the custnew table should be
the same as the customers table described in Appendix B, “The
Example Tables.” When populating custnew, be sure not to use
cust_id values that were already used in customers. (The subse-
quent INSERT operation will fail if primary key values are duplicated.)
Alternatively, just omit that column and have SQL Server generate
new values during the import process.

Input ▼

INSERT INTO customers(cust_contact,
cust_email,
cust_name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country)

SELECT cust_contact,
cust_email,
cust_name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country

FROM custnew;

Analysis ▼

This example uses INSERT SELECT to import all the data from custnew
into customers. Instead of listing the VALUES to be inserted, the SELECT
statement retrieves them from custnew. Each column in the SELECT corre-
sponds to a column in the specified columns list. How many rows will
this statement insert? That depends on how many rows are in the custnew
table. If the table is empty, no rows will be inserted (and no error will be
generated because the operation is still valid). If the table does, in fact,
contain data, all that data is inserted into customers.

178 LESSON 18: Inserting Data

TIP: Column Names in INSERT SELECT

This example uses the same column names in both the INSERT and
SELECT statements for simplicity’s sake. But there is no requirement
that the column names match. In fact, SQL Server does not even
pay attention to the column names returned by the SELECT. Rather,
the column position is used, so the first column in the SELECT
(regardless of its name) will be used to populate the first specified
table column, and so on. This is very useful when you are importing
data from tables that use different column names.

The SELECT statement used in an INSERT SELECT can include a WHERE
clause to filter the data to be inserted.

Another way to insert retrieved data is to use SELECT INTO. This variation
to SELECT allows you to specify a destination table that will be populated
with the results of a SELECT statement.

Input ▼

SELECT cust_contact,
cust_email,
cust_name,
cust_address,
cust_city,
cust_state,
cust_zip,
cust_country

INTO customersExport
FROM customers;

Analysis ▼

When used, the INTO clause must come after the column list and before
the FROM clause. INTO specifies the name of a table to be created, and this
table name must not already exist (or an error will be generated). Once
the statement has been executed, the newly created table will contain the
rows retrieved by the SELECT statement.

SELECT INTO is very useful when you’re trying to create a single table that
contains rows retrieved from multiple tables.

179Summary

TIP: INSERT SELECT Versus SELECT INTO

You can think of INSERT SELECT as being an import operation and
SELECT INTO as being an export operation.

NOTE: More Examples

Looking for more examples of INSERT use? See the sample table
population scripts (described in Appendix B) used to create the sam-
ple tables used in this book.

Summary
In this lesson, you learned how to use INSERT to insert rows into a data-
base table. You learned several other ways to use INSERT, and why explic-
it column specification is preferred. You also learned how to use INSERT
SELECT to import rows from another table, and SELECT INTO to export
rows to a new table. In the next lesson, you’ll learn how to use UPDATE
and DELETE to further manipulate table data.

This page intentionally left blank

LESSON 19

Updating and Deleting
Data

In this lesson, you will learn how to use the UPDATE and DELETE state-
ments to enable you to further manipulate your table data.

Updating Data
To update (modify) data in a table, you use the UPDATE statement. UPDATE
can be used in two ways:

. To update specific rows in a table

. To update all rows in a table

CAUTION: Don’t Omit the WHERE Clause

Special care must be exercised when using UPDATE because it is all
too easy to mistakenly update every row in your table. Be sure to
read this entire section on UPDATE before using this statement.

TIP: UPDATE and Security

Use of the UPDATE statement can be restricted and controlled. More
on this in Lesson 29, “Managing Security.”

The UPDATE statement is very easy to use; some would say too easy. The
basic format of an UPDATE statement is made up of three parts:

. The table to be updated

. The column names and their new values

. The filter condition that determines which rows should be updated

Let’s take a look at a simple example. Customer 10005 now has an email
address, and so his record needs updating. The following statement per-
forms this update:

Input ▼

UPDATE customers
SET cust_email = ‘elmer@fudd.com’
WHERE cust_id = 10005;

The UPDATE statement always begins with the name of the table being
updated. In this example, it is the customers table. The SET command is
then used to assign the new value to a column. As used here, the SET
clause sets the cust_email column to the specified value:

SET cust_email = ‘elmer@fudd.com’

The UPDATE statement finishes with a WHERE clause that tells SQL Server
which row to update. Without a WHERE clause, SQL Server would update
all the rows in the customers table with this new email address, definitely
not the desired effect.

Updating multiple columns requires a slightly different syntax:

Input ▼

UPDATE customers
SET cust_name = ‘The Fudds’,

cust_email = ‘elmer@fudd.com’
WHERE cust_id = 10005;

When updating multiple columns, you use only a single SET command
and separate each column = value pair by a comma. (No comma is

182 LESSON 19: Updating and Deleting Data

specified after the last column.) In this example, the columns cust_name
and cust_email will both be updated for customer 10005.

183Deleting Data

TIP: Using Subqueries in an UPDATE Statement

Subqueries may be used in UPDATE statements, enabling you to
update columns with data retrieved with a SELECT statement. Refer
back to Lesson 13, “Working with Subqueries,” for more information
on subqueries and their uses.

To delete a column’s value, you can set it to NULL (assuming the table is
defined to allow NULL values). You can do this as follows:

Input ▼

UPDATE customers
SET cust_email = NULL
WHERE cust_id = 10005;

Here, the NULL keyword is used to save no value to the cust_email
column.

Deleting Data
To delete (remove) data from a table, you use the DELETE statement.
DELETE can be used in two ways:

. To delete specific rows from a table

. To delete all rows from a table

CAUTION: Don’t Omit the WHERE Clause

Special care must be exercised when using DELETE because it is all
too easy to mistakenly delete every row from your table. Be sure to
read this entire section on DELETE before using this statement.

184 LESSON 19: Updating and Deleting Data

TIP: DELETE and Security

Use of the DELETE statement can be restricted and controlled. More
on this in Lesson 29.

I already stated that UPDATE is very easy to use. The good (and bad) news
is that DELETE is even easier to use.

The following statement deletes a single row from the customers table:

Input ▼

DELETE FROM customers
WHERE cust_id = 10006;

This statement should be self-explanatory. DELETE FROM requires that you
specify the name of the table from which the data is to be deleted. The
WHERE clause filters which rows are to be deleted. In this example, only
customer 10006 will be deleted. If the WHERE clause were omitted, this
statement would have deleted every customer in the table.

DELETE takes no column names or wildcard characters. DELETE deletes
entire rows, not columns. To delete specific columns, use an UPDATE state-
ment (as shown earlier in this lesson).

NOTE: Table Contents, Not Tables

The DELETE statement deletes rows from tables, even all rows from
tables. But DELETE never deletes the table itself.

Guidelines for Updating and
Deleting Data
The UPDATE and DELETE statements used in the previous sections all have
WHERE clauses, and there is a very good reason for this. If you omit the
WHERE clause, the UPDATE or DELETE is applied to every row in the table. In
other words, if you execute an UPDATE without a WHERE clause, every row

in the table is updated with the new values. Similarly, if you execute
DELETE without a WHERE clause, all the contents of the table are deleted.

Here are some best practices that many SQL programmers follow:

. Never execute an UPDATE or a DELETE without a WHERE clause,
unless you really do intend to update and delete every row.

. Make sure every table has a primary key (refer back to Lesson
14, “Joining Tables,” if you have forgotten what this is), and use
it as the WHERE clause whenever possible. (You may specify indi-
vidual primary keys, multiple values, or value ranges.)

. Before you use a WHERE clause with an UPDATE or a DELETE, first
test it with a SELECT to make sure it is filtering the right records;
it is far too easy to write incorrect WHERE clauses.

. Use database-enforced referential integrity (refer back to Lesson
14 for this one, too) so that SQL Server will not allow the dele-
tion of rows that have data in other tables related to them.

185Summary

CAUTION: Use with Caution

The bottom line is that SQL Server has no Undo button. Be very
careful using UPDATE and DELETE; otherwise, you’ll find yourself
updating and deleting the wrong data.

Summary
In this lesson, you learned how to use the UPDATE and DELETE statements
to manipulate the data in your tables. You learned the syntax for each of
these statements, as well as the inherent dangers they expose. You also
learned why WHERE clauses are so important in UPDATE and DELETE state-
ments, and you were given guidelines to follow to help ensure your data
does not get damaged inadvertently.

This page intentionally left blank

LESSON 20

Creating and
Manipulating Tables

In this lesson, you’ll learn the basics of table creation, alteration, and
deletion.

Creating Tables
T-SQL statements are not used just for table data manipulation. Indeed,
T-SQL can be used to perform all database and table operations, including
the creation and manipulation of tables themselves.

There are generally two ways to create database tables:

. Using an administration tool (such as one of the tools discussed
in Lesson 2, “Introducing SQL Server”) to create and manage
database tables interactively

. Using T-SQL statements to manipulate tables directly

To create tables programmatically, you use the CREATE TABLE SQL
statement. It is worth noting that when you use interactive tools, you are
actually using T-SQL statements. Instead of you writing these statements,
however, the interface generates and executes the T-SQL seamlessly for
you. (The same is true for changes to existing tables.)

NOTE: Additional Examples

For additional examples of table-creation scripts, see the code used
to create the sample tables used in this book.

Basic Table Creation
To create a table using CREATE TABLE, you must specify the following
information:

. The name of the new table, after the keywords CREATE TABLE

. The name and definition of the table columns, separated by
commas

The CREATE TABLE statement may also include other keywords and
options, but at a minimum you need the table name and column details.
The following T-SQL statement creates the customers table used through-
out this book:

Input ▼

CREATE TABLE customers
(
cust_id INT NOT NULL IDENTITY(1,1),
cust_name NCHAR(50) NOT NULL ,
cust_address NCHAR(50) NULL ,
cust_city NCHAR(50) NULL ,
cust_state NCHAR(5) NULL ,
cust_zip NCHAR(10) NULL ,
cust_country NCHAR(50) NULL ,
cust_contact NCHAR(50) NULL ,
cust_email NCHAR(255) NULL ,
PRIMARY KEY (cust_id)

);

Analysis ▼

As you can see in the preceding statement, the table name is specified
immediately following the CREATE TABLE keywords. The actual table defi-
nition (all the columns) is enclosed within parentheses. The columns
themselves are separated by commas. This particular table is made up of
nine columns. Each column definition starts with the column name (which
must be unique within the table), followed by the column’s datatype.
(Refer to Lesson 1, “Understanding SQL,” for an explanation of
datatypes. In addition, Appendix D, “T-SQL Datatypes,” lists the

188 LESSON 20: Creating and Manipulating Tables

datatypes supported by SQL Server.) The table’s primary key may be
specified at table-creation time using the PRIMARY KEY keywords; here,
column cust_id is specified as the primary key column. The entire state-
ment is terminated with a semicolon after the closing parenthesis. (Ignore
the IDENTITY keyword for now; we’ll come back to that later.)

189Creating Tables

TIP: Statement Formatting

As you will recall, white space is ignored in T-SQL statements.
Statements can be typed on one long line or broken up over many
lines. It makes no difference at all. This enables you to format your
SQL as best suits you. The preceding CREATE TABLE statement is a
good example of T-SQL statement formatting; the code is specified
over multiple lines, with the column definitions indented for easier
reading and editing. Formatting your T-SQL in this way is entirely
optional, but highly recommended.

TIP: Handling Existing Tables

When you create a new table, the table name specified must not
exist; otherwise, you’ll generate an error. To prevent accidental over-
writing, SQL Server requires that you first manually remove a table
(see later sections for details) and then re-create it, rather than just
overwriting it.

Working with NULL Values
Back in Lesson 6, “Filtering Data,” you learned that a NULL value is no
value or the lack of a value. A column that allows NULL values also allows
rows to be inserted with no value at all in that column. A column that
does not allow NULL values does not accept rows with no value; in other
words, that column will always be required when rows are inserted or
updated.

Every table column is either a NULL column or a NOT NULL column, and
that state is specified in the table definition at creation time. Take a look
at the following example:

Input ▼

CREATE TABLE orders
(
order_num INT NOT NULL IDENTITY(1,1),
order_date DATETIME NOT NULL ,
cust_id INT NOT NULL ,
PRIMARY KEY (order_num)

);

Analysis ▼

This statement creates the orders table used throughout this book. orders
contains three columns: the order number, order date, and customer ID.
All three columns are required, so each contains the keyword NOT NULL.
This will prevent the insertion of columns with no value. If someone tries
to insert no value, an error will be returned, and the insertion will fail.

190 LESSON 20: Creating and Manipulating Tables

CAUTION: Understanding NULL

Don’t confuse NULL values with empty strings. A NULL value is the
lack of a value; it is not an empty string. If you were to specify ‘’
(two single quotes with nothing in between them), that would be
allowed in a NOT NULL column. An empty string is a valid value; it is
not no value. NULL values are specified with the keyword NULL, not
with an empty string.

Primary Keys Revisited
As already explained, primary key values must be unique. That is, every
row in a table must have a unique primary key value. If a single column is
used for the primary key, it must be unique; if multiple columns are used,
the combination of them must be unique.

The CREATE TABLE examples seen thus far use a single column as the pri-
mary key. The primary key is thus defined using a statement such as

PRIMARY KEY (vend_id)

To create a primary key made up of multiple columns, simply specify the
column names as a comma-delimited list, as shown in this example:

Input ▼

CREATE TABLE orderitems
(
order_num INT NOT NULL ,
order_item INT NOT NULL ,
prod_id NCHAR(10) NOT NULL ,
quantity INT NOT NULL ,
item_price MONEY NOT NULL ,
PRIMARY KEY (order_num, order_item)

);

The orderitems table contains the order specifics for each order in the
orders table. There may be multiple items per order, but each order will
only ever have one first item, one second item, and so on. As such, the
combination of order number (column order_num) and order item (col-
umn order_item) is unique, and thus suitable to be the primary key,
which is defined as follows:

PRIMARY KEY (order_num, order_item)

Primary keys may be defined at table-creation time (as seen here) or after
table creation (as will be discussed later in this lesson).

191Creating Tables

TIP: Primary Keys and NULL Values

Back in Lesson 1, you learned that primary keys are columns whose
values uniquely identify every row in a table. Only columns that do
not allow NULL values can be used in primary keys. Columns that
allow no value at all cannot be used as unique identifiers.

Using IDENTITY
Let’s take a look at the customers and orders tables again. Customers in
the customers table are uniquely identified by column cust_id, a unique
number for each and every customer. Similarly, orders in the orders table
each have a unique order number stored in the column order_num.

These numbers have no special significance, other than the fact that they
are unique. When a new customer or order is added, a new customer ID
or order number is needed. The numbers can be anything, as long as they
are unique.

Obviously, the simplest number to use would be whatever comes next,
whatever is one higher than the current highest number. For example, if
the highest cust_id is 10005, the next customer inserted into the table
could have a cust_id of 10006.

Simple, right? Well, not really. How would you determine the next num-
ber to be used? You could, of course, use a SELECT statement to get the
highest number, using the Max() function introduced in Lesson 11,
“Summarizing Data,” and then add 1 to it. But that would not be safe
(you’d need to find a way to ensure that no one else inserted a row in
between the time that you performed the SELECT and the INSERT, a legiti-
mate possibility in multiuser applications). Nor would it be efficient (per-
forming additional T-SQL operations is never ideal).

And that’s where IDENTITY comes in. Look at the following line (part of
the CREATE TABLE statement used to create the customers table):

cust_id INT NOT NULL IDENTITY(1,1),

IDENTITY tells SQL Server that this column is to be automatically incre-
mented each time a row is added. Each time an INSERT operation is per-
formed, SQL Server automatically increments the column, assigning it the
next available value. This way, each row is assigned a unique cust_id,
which is then used as the primary key value.

IDENTITY needs to know the number to start from (known as the seed) and
the increment to be used each time a new value is generated. IDENTITY(1,1)
means “start with a seed of 1 and increment by 1 to generate each new
number.” To start with a seed of 100 and increment by 10, you could use
IDENTITY(100,10). If the seed and increment values are not provided,
(1,1) is used by default.

Only one IDENTITY column is allowed per table, and IDENTITY columns
are usually used as primary keys.

192 LESSON 20: Creating and Manipulating Tables

193Creating Tables

NOTE: Overriding IDENTITY

Need to use a specific value in a column designated as IDENTITY?
You can, but first you’ll need to SET IDENTITY_INSERT to ON as
mentioned in Lesson 18, “Inserting Data.” (See the table-population
scripts used in this book for examples of this.)

TIP: Determining the IDENTITY Value

One downside of having SQL Server generate (via IDENTITY) primary
keys for you is that you don’t know what those values are.

Consider this scenario: You are adding a new order. This requires
creating a single row in the orders table and then a row for each
item ordered in the orderitems table. The order_num is stored
along with the order details in orderitems. This is how the orders
and orderitems table are related to each other. And that obviously
requires that you know the generated order_num after the orders
row was inserted and before the orderitems rows are inserted.

So how could you obtain this value when an IDENTITY column is
used? By referring to the special @@IDENTITY system function, like
this:

SELECT @@IDENTITY AS newId;

This returns the last generated IDENTITY value as newId, which you
can then use in subsequent T-SQL statements.

Specifying Default Values
SQL Server enables you to specify default values to be used if no value is
specified when a row is inserted. Default values are specified using the
DEFAULT keyword in the column definitions in the CREATE TABLE
statement.

Look at the following example:

Input ▼

CREATE TABLE orderitems
(
order_num INT NOT NULL ,
order_item INT NOT NULL ,
prod_id NCHAR(10) NOT NULL ,
quantity INT NOT NULL DEFAULT 1,
item_price MONEY NOT NULL ,
PRIMARY KEY (order_num, order_item)

);

Analysis ▼

This statement creates the orderitems table, which contains the individ-
ual items that make up an order. (The order itself is stored in the orders
table.) The quantity column contains the quantity for each item in an
order. In this example, adding the text DEFAULT 1 to the column descrip-
tion instructs SQL Server to use a quantity of 1 if no quantity is specified.

The previous example used a fixed value as the specified DEFAULT. You
can also use T-SQL functions as default values, as shown in this example:

Input ▼

CREATE TABLE orders
(
order_num INT NOT NULL IDENTITY(1,1),
order_date DATETIME NOT NULL DEFAULT GetDate(),
cust_id INT NOT NULL ,
PRIMARY KEY (order_num)

);

Analysis ▼

Orders are stored in the orders table, and the order date is stored in the
order_date column. The default value for this column is GetDate(), a
T-SQL function that returns the current system date. This way, if an
explicit order_date value is not specified when a row is inserted, the
current date will be used automatically.

194 LESSON 20: Creating and Manipulating Tables

By the way, despite its name, GetDate() actually returns the current sys-
tem date and time. If you want to see exactly what GetDate() returns, try
the following simple SELECT statement:

Input ▼

SELECT GetDate();

195Updating Tables

TIP: Using DEFAULT Instead of NULL Values

Many database developers use DEFAULT values instead of NULL
columns, especially in columns that will be used in calculations or
data groupings.

Updating Tables
To update table definitions, you use the ALTER TABLE statement. But, ide-
ally, tables should never be altered after they contain data. You should
spend sufficient time anticipating future needs during the table-design
process so extensive changes are not required later on.

To change a table using ALTER TABLE, you must specify the following
information:

. The name of the table to be altered after the keywords ALTER
TABLE. (The table must exist, or an error will be generated.)

. The list of changes to be made.

The following example adds a column to a table:

Input ▼

ALTER TABLE vendors
ADD vend_phone CHAR(20);

Analysis ▼

This statement adds a column named vend_phone to the vendors table.
The datatype must be specified.

To remove this newly added column, you can do the following:

Input ▼

ALTER TABLE vendors
DROP COLUMN vend_phone;

One common use for ALTER TABLE is to define foreign keys. The follow-
ing is the code used to define the foreign keys used by the tables in this
book:

Input ▼

ALTER TABLE orderitems
ADD CONSTRAINT fk_orderitems_orders FOREIGN KEY (order_num)
REFERENCES orders (order_num);

ALTER TABLE orderitems
ADD CONSTRAINT fk_orderitems_products FOREIGN KEY (prod_id)
REFERENCES products (prod_id);

ALTER TABLE orders
ADD CONSTRAINT fk_orders_customers FOREIGN KEY (cust_id)
REFERENCES customers (cust_id);

ALTER TABLE products
ADD CONSTRAINT fk_products_vendors FOREIGN KEY (vend_id)
REFERENCES vendors (vend_id);

ALTER TABLE productnotes
ADD CONSTRAINT fk_productnotes_products FOREIGN KEY (prod_id)
REFERENCES products (prod_id);

Analysis ▼

Here, five ALTER TABLE statements are used because five different tables
are being altered. Each of the statements defines a foreign key. If we had
needed multiple foreign keys on a single table, those could all have been
defined using a single ALTER TABLE statement.

196 LESSON 20: Creating and Manipulating Tables

Complex table structure changes may require a manual move process
involving these steps:

1. Create a new table with the new column layout.

2. Use the INSERT SELECT or SELECT INTO statement (see Lesson
18 for details of this statement) to copy the data from the old
table to the new table. Use conversion functions and calculated
fields, if needed.

3. Verify that the new table contains the desired data.

4. Rename the old table (or delete it, if you are really brave).

5. Rename the new table with the name previously used by the old
table.

6. Re-create any triggers, stored procedures, indexes, and foreign
keys as needed.

197Deleting Tables

CAUTION: Use ALTER TABLE Carefully

Use ALTER TABLE with extreme caution, and be sure you have a
complete set of backups (both schema and data) before proceeding.
Database table changes cannot be undone, and if you add columns
you don’t need, you might not be able to remove them. Similarly, if
you drop a column that you do need, you might lose all the data in
that column.

Deleting Tables
Deleting tables (actually removing the entire table, not just the contents)
is very easy, arguably too easy. Tables are deleted using the DROP TABLE
statement:

Input ▼

DROP TABLE customers2;

Analysis ▼

This statement deletes the customers2 table (assuming it exists). There is
no confirmation, nor is there an undo: Executing the statement will per-
manently remove the table.

Renaming Tables
There is no T-SQL statement for renaming tables, but a SQL Server–pro-
vided stored procedure named sp_rename can be used to accomplish this:

Input ▼

EXEC sp_rename ‘customers2’, ‘customers’;

Analysis ▼

sp_rename can be used to rename all sorts of objects, including tables.
This example renames table customers2 to customers.

Summary
In this lesson, you learned several new SQL statements. CREATE TABLE is
used to create new tables, ALTER TABLE is used to change table columns
(or other objects such as constraints and indexes), and DROP TABLE is used
to completely delete a table. These statements should be used with
extreme caution, and only after backups have been made. You also
learned about identity fields, defining primary and foreign keys, and other
important table and column options.

198 LESSON 20: Creating and Manipulating Tables

LESSON 21

Using Views

In this lesson, you’ll learn exactly what views are, how they work, and
when they should be used. You’ll also see how views can be used to sim-
plify some of the SQL operations performed in earlier lessons.

Understanding Views
Views are virtual tables. Unlike tables that contain data, views simply
contain queries that dynamically retrieve data when used.

The best way to understand views is to look at an example. Back in
Lesson 14, “Joining Tables,” you used the following SELECT statement to
retrieve data from three tables:

Input ▼

SELECT cust_name, cust_contact
FROM customers, orders, orderitems
WHERE customers.cust_id = orders.cust_id
AND orderitems.order_num = orders.order_num
AND prod_id = ‘TNT2’;

That query was used to retrieve the customers who had ordered a specific
product. Anyone needing this data would have to understand the table
structure as well as how to create the query and join the tables. To retrieve
the same data for another product (or for multiple products), you would
have to modify the last WHERE clause.

Now imagine that you could wrap that entire query in a virtual table
called productcustomers. You could then simply do the following to
retrieve the same data:

Input ▼

SELECT cust_name, cust_contact
FROM productcustomers
WHERE prod_id = ‘TNT2’;

This is where views come into play. productcustomers is a view, and as a
view, it does not contain any actual columns or data as a table would.
Instead, it contains a SQL query; the same query used previously to join
the tables properly.

Why Use Views
You’ve already seen one use for views. Here are some other common
uses:

. To reuse SQL statements.

. To simplify complex SQL operations. After the query is written,
it can be reused easily, without you having to know the details of
the underlying query itself.

. To expose parts of a table instead of complete tables.

. To secure data. Users can be given access to specific subsets of
tables instead of to entire tables.

. To change data formatting and representation. Views can return
data formatted and presented differently from their underlying
tables.

For the most part, after views are created, they can be used in the same
way as tables. You can perform SELECT operations, filter and sort data,
join views to other views or tables, and even add and update data (with
some restrictions, as will be noted later in this lesson).

The important thing to remember is, views are just that, views into data
stored elsewhere. Views contain no data themselves, so the data they
return is retrieved from other tables. When data is added or changed in
those tables, the views will return that changed data.

200 LESSON 21: Using Views

View Rules and Restrictions
Here are some of the most common rules and restrictions governing view
creation and usage:

. Like tables, views must be uniquely named. (They cannot have
the name of any other table or view.)

. There is no limit to the number of views that can be created.

. SQL Server views may contain no more than 1,024 columns.

. To create views, you must have security access. This is usually
granted by the database administrator.

. Views can be nested; that is, a view may be built using a query
that retrieves data from another view.

. ORDER BY may not be used in views, but ORDER BY may be used
in the SELECT statement that retrieves data from the view.

. Views cannot be indexed, nor can they have triggers or default
values associated with them.

. Views can be used in conjunction with tables (for example, to
create a SELECT statement that joins a table and a view).

Using Views
So now that you know what views are (and the rules and restrictions that
govern them), let’s look at view creation:

. Views are created using the CREATE VIEW statement.

. To remove a view, you use the DROP statement. The syntax is
simply DROP VIEW viewname;.

. To update a view, you may use the DROP statement and then the
CREATE VIEW statement again.

201Using Views

Using Views to Simplify Complex Joins
One of the most common uses of views is to hide complex SQL, and this
often involves joins. Look at the following statement:

Input ▼

CREATE VIEW productcustomers AS
SELECT cust_name, cust_contact, prod_id
FROM customers, orders, orderitems
WHERE customers.cust_id = orders.cust_id
AND orderitems.order_num = orders.order_num;

Analysis ▼

This statement creates a view named productcustomers, which joins
three tables to return a list of all customers who have ordered any product.
If you were to SELECT * FROM productcustomers, you’d list every cus-
tomer who ordered anything.

To retrieve a list of customers who ordered product TNT2, you can do the
following:

Input ▼

SELECT cust_name, cust_contact
FROM productcustomers
WHERE prod_id = ‘TNT2’;

Output ▼

cust_nam cust_contact
-------------------- ------------
Coyote Inc. Y Lee
Yosemite Place Y Sam

Analysis ▼

This statement retrieves specific data from the view by issuing a WHERE
clause. When SQL Server processes the request, it adds the specified
WHERE clause to any existing WHERE clauses in the view query so the data is
filtered correctly.

202 LESSON 21: Using Views

As you can see, views can greatly simplify the use of complex SQL state-
ments. Using views, you can write the underlying SQL once and then
reuse it as needed.

203Using Views

TIP: Creating Reusable Views

It is a good idea to create views that are not tied to specific data.
For example, the view created in this example returns customers for
all products, not just product TNT2 (for which the view was first cre-
ated). Expanding the scope of the view enables it to be reused, mak-
ing it even more useful. It also eliminates the need for you to create
and maintain multiple similar views.

Using Views to Reformat Retrieved Data
As mentioned previously, another common use of views is for reformat-
ting retrieved data. The following SELECT statement (from Lesson 9,
“Creating Calculated Fields”) returns vendor name and location in a sin-
gle combined calculated column:

Input ▼

SELECT RTrim(vend_name) + ‘ (‘ + RTrim(vend_country) + ‘)’
AS vend_title

FROM vendors
ORDER BY vend_name;

Output ▼

vend_title
--
ACME (USA)
Anvils R Us (USA)
Furball Inc. (USA)
Jet Set (England)
Jouets Et Ours (France)
LT Supplies (USA)

Now suppose that you regularly needed results in this format. Rather than
perform the concatenation each time it is needed, you can create a view

and use that instead. To turn this statement into a view, you can do the
following:

Input ▼

CREATE VIEW vendorlocations AS
SELECT RTrim(vend_name) + ‘ (‘ + RTrim(vend_country) + ‘)’

AS vend_title
FROM vendors;

Analysis ▼

This statement creates a view using the exact same query as the previous
SELECT statement. To retrieve the data to create all mailing labels, simply
do the following:

Input ▼

SELECT *
FROM vendorlocations
ORDER BY vend_title;

Output ▼

vend_title
--
ACME (USA)
Anvils R Us (USA)
Furball Inc. (USA)
Jet Set (England)
Jouets Et Ours (France)
LT Supplies (USA)

Using Views to Filter Unwanted Data
Views are also useful for applying common WHERE clauses. For example,
you might want to define a customeremaillist view that filters out cus-
tomers without email addresses. To do this, you can use the following
statement:

204 LESSON 21: Using Views

Input ▼

CREATE VIEW customeremaillist AS
SELECT cust_id, cust_name, cust_email
FROM customers
WHERE cust_email IS NOT NULL;

Analysis ▼

Obviously, when sending email to a mailing list you’d want to ignore
users who have no email address. The WHERE clause here filters out those
rows that have NULL values in the cust_email columns so they’ll not be
retrieved.

View customeremaillist can now be used for data retrieval just like any
table.

Input ▼

SELECT *
FROM customeremaillist;

Output ▼

cust_id cust_name cust_email
----------- ------------------- --------------------
10001 Coyote Inc. ylee@coyote.com
10003 Wascals rabbit@wascally.com
10004 Yosemite Place sam@yosemite.com
10005 E Fudd elmer@fudd.com

205Using Views

NOTE: WHERE Clauses and WHERE Clauses

If you use a WHERE clause when retrieving data from the view, the
two sets of clauses (the one in the view and the one passed to it)
will be combined automatically.

Using Views with Calculated Fields
Views are exceptionally useful for simplifying the use of calculated fields.
The following is a SELECT statement introduced in Lesson 9. It retrieves

the order items for a specific order, calculating the expanded price for
each item:

Input ▼

SELECT prod_id,
quantity,
item_price,
quantity*item_price AS expanded_price

FROM orderitems
WHERE order_num = 20005;

Output ▼

prod_id quantity item_price expanded_price
---------- ----------- --------------------- --------------
ANV01 10 5.99 59.90
ANV02 3 9.99 29.97
TNT2 5 10.00 50.00
FB 1 10.00 10.00

To turn this into a view, do the following:

Input ▼

CREATE VIEW orderitemsexpanded AS
SELECT order_num,

prod_id,
quantity,
item_price,
quantity*item_price AS expanded_price

FROM orderitems;

To retrieve the details for order 20005 (the previous output), do the
following:

Input ▼

SELECT *
FROM orderitemsexpanded
WHERE order_num = 20005;

206 LESSON 21: Using Views

Output ▼

order_num prod_id quantity item_price expanded_price
--------- ---------- ----------- ----------- --------------
20005 ANV01 10 5.99 59.90
20005 ANV02 3 9.99 29.97
20005 TNT2 5 10.00 50.00
20005 FB 1 10.00 10.00

As you can see, views are easy to create and even easier to use. Used cor-
rectly, views can greatly simplify complex data manipulation.

Updating Views
All of the views thus far have been used with SELECT statements. But can
view data be updated? The answer is, it depends.

As a rule, yes, views are updateable (that is, you can use INSERT, UPDATE,
and DELETE on them). Updating a view updates the underlying table (the
view, you will recall, has no data of its own); if you add or remove rows
from a view, you are actually adding them to or removing them from the
underlying table.

But not all views are updateable. Basically, if SQL Server is unable to
correctly ascertain the underlying data to be updated, updates (this
includes inserts and deletes) are not allowed. In practice, this means that if
any of the following are used, you’ll not be able to update the view:

. Multiple base tables

. Grouping (using GROUP BY and HAVING)

. Joins

. Subqueries

. Unions

. Aggregate functions, such as Min(), Count(), Sum(), and so
forth

. DISTINCT

. Derived (calculated) columns

207Using Views

In other words, many of the examples used in this lesson would not be
updateable. This might sounds like a serious restriction, but in reality it
isn’t because views are primarily used for data retrieval anyway.

Summary
Views are virtual tables. They do not contain data; they contain queries
that retrieve data, as needed, instead. Views provide a level of encapsula-
tion around SQL Server SELECT statements and can be used to simplify
data manipulation as well as to reformat or secure underlying data.

208 LESSON 21: Using Views

LESSON 22

Programming with
T-SQL

Although T-SQL is not a general-purpose programming language, it does
support programming constructs such as variables and conditional pro-
cessing. Because these will be used in the next few lessons, this lesson
introduces these T-SQL programming concepts.

Understanding T-SQL
Programming
All of the SQL statements used thus far have been single standalone state-
ments: SELECT statements to retrieve data, ALTER TABLE statements to
make table changes, and so on. But some data-retrieval tasks are more
complex, often involving multiple statements, conditional processing, and
mid-process data manipulation.

T-SQL is not a general-purpose programming language, but it does sup-
port some basic programming ideas and constructs that can be used within
data manipulation processes. These are generally not used when working
with simple SQL statements, but are often used when working with stored
procedures (introduced in Lesson 23, “Working with Stored Procedures”),
cursors (see Lesson 24, “Using Cursors), triggers (explained in Lesson 25,
“Using Triggers”), and more.

As such, it is worthwhile to briefly examine these capabilities, specifically
the following:

. Using variables

. Performing conditional processing

. Repeating processes (looping)

Using Variables
In computer programming, a variable is a named object that stores values.
Although variable use and capabilities vary from one programming lan-
guage to the next, the basic ability to define variables and store values in
them for subsequent use is pretty universal.

T-SQL variables have specific rules and requirements:

. All T-SQL variables names must start with @, local variables are
prefixed with @, and global variables (which are used extensively
by SQL Server itself and generally should not be used for your
own purposes) are prefixed with @@.

. Before they can be used, T-SQL variables must be declared
using the DECLARE statement.

. When a variable is declared, its datatype must be specified.
(Refer to Lesson 1, “Understanding SQL,” for an explanation of
datatypes. In addition, Appendix D, “T-SQL Datatypes,” lists the
datatypes supported by SQL Server.)

. Multiple variables may be defined using individual DECLARE
statements, or they may be comma-delimited in a single DECLARE
statement.

. There is no way to “undeclare” variables. They remain present
until they go out of scope. For local variables, this means they’ll
exist until the process completes.

Declaring Variables
The following example demonstrates the use of DECLARE:

Input ▼

DECLARE @age INT;
DECLARE @firstName CHAR(20), @lastName CHAR(20);

210 LESSON 22: Programming with T-SQL

Analysis ▼

This example declares three variables. The first DECLARE statement
declares a single variable named @age of type INT (an integer, a numeric
value), and the second declares two variables of type CHAR(20) (a 20-
character-length string). Notice that the second DECLARE statement
requires a comma between the variables being declared.

Assigning Values to Variables
When variables are first declared, they contain no values (actually, they
contain NULL). To assign values to variables, you use the SET statement, as
shown here:

Input ▼

DECLARE @age INT;
DECLARE @firstName CHAR(20), @lastName CHAR(20);

SET @lastName=’Forta’;
SET @firstName=’Ben’;
SET @age=21;

Analysis ▼

This example declares the same three variables as seen previously, and
then uses three SET statements to assign values to those variables (my
name and age, wishfully thinking).

211Using Variables

TIP: Assign Default Values

Many T-SQL developers find it useful to always initialize variables
with default or initial values right after they have been declared.

You can also use SELECT to assign values to variables, as shown here:

Input ▼

SELECT @age=21;

In practice, SET is used to assign values to variables, unless the values are
the result of a SELECT operation, in which case SELECT is obviously used.

212 LESSON 22: Programming with T-SQL

NOTE: SET or SELECT?

There is one important difference between using SET or SELECT to
assign variable values. SET only sets a single variable, and to assign
values to multiple variables you must use multiple SET statements.
SELECT, on the other hand, can be used to assign values to multiple
variables in a single statement.

Viewing Variable Contents
When using variables, it is often necessary to inspect their contents. The
simplest way to view variable contents is to output them, and there are
two ways to do this. SELECT can be used to retrieve variable values, as
shown here:

Input ▼

DECLARE @age INT;
DECLARE @firstName CHAR(20), @lastName CHAR(20);

SET @lastName=’Forta’;
SET @firstName=’Ben’;
SET @age=21;

SELECT @lastName, @firstName, @age

Output ▼

------------------- ------------------- -----------
Forta Ben 21

Analysis ▼

As seen here, SELECT can return variables. However, the variable names
themselves are not returned.

213Using Variables

TIP: Use Aliases

You can use aliases in SELECT statements returning variables by
using the AS keyword (see Lesson 9, “Creating Calculated Fields”).

T-SQL also supports the PRINT statement, which is used to display mes-
sages along with any returned results. Here is an example:

Input ▼

DECLARE @age INT;
DECLARE @firstName CHAR(20), @lastName CHAR(20);

SET @lastName=’Forta’;
SET @firstName=’Ben’;
SET @age=21;

PRINT @lastName + ‘, ‘ + @firstName;
PRINT @age;

Output ▼

Forta , Ben
21

Analysis ▼

PRINT simply outputs text. In this example, the first line is a string made
up of three strings, a variable, static (fixed) text, and then another vari-
able. The second line prints a numeric variable.

TIP: Converting Variables to Strings

What if you wanted to display the age output as Age: 21? You’d
need to concatenate the string Age: with the variable @age, but the
simple + concatenation operation used to join the strings together
would fail because @age is a number, not a string. To get around this
problem, you would need to convert @age to a string so as to be
able to concatenate it, like this:

PRINT ‘Age: ‘ + Convert(CHAR, @age);

214 LESSON 22: Programming with T-SQL

NOTE: Using the Debugger

There is another way to inspect variable contents. SQL Server sup-
ports the use of a debugger to step through SQL code line by line,
allowing you to inspect variable contents in the process. Both SQL
Server 2000 and SQL Server 2005 support debugger use, although
the debuggers themselves (and how to use them) vary significantly
between those two versions.

Unfortunately, coverage of the SQL Server Debugger is beyond the
scope of this book, but relevant documentation is included with SQL
Server itself.

Using Variables in T-SQL Statements
Now that you know how to declare, populate, and view the contents of
variables, let’s look at a practical example of how variables could be used.

Suppose you need to run two queries, one to return customer information
for a specific customer and another to return orders placed by that cus-
tomer. This requires two SELECT statements, as shown here:

Input ▼

SELECT cust_name, cust_email
FROM customers
WHERE cust_id = 10001;

SELECT order_num, order_date
FROM orders
WHERE cust_id = 10001
ORDER BY order_date;

Output ▼

cust_name cust_email
------------------------------ ------------------
Coyote Inc. ylee@coyote.com

order_num order_date
----------- -----------------------
20005 2005-09-01 00:00:00.000
20009 2005-10-08 00:00:00.000

Analysis ▼

This batch-processing example is pretty self-explanatory; two SELECT
statements are used, so two sets of results are returned.

215Using Variables

PLAIN ENGLISH: Batch Processing

A batch is a set of SQL statements all submitted together to SQL
Server for processing.

Notice that both SELECT statements use a cust_id value in their WHERE
clauses. To run the same queries for another customer, you will need to
update both WHERE clauses. Obviously, that leaves room for error; there is
a possibility that someone will update one of the WHERE clauses but not the
other, which would result in incorrect data being returned. In this simple
example, there are only two places where the code would need updating
to perform a different search. Imagine a more complex example, though,
where the customer ID is used in lots of places. Obviously, the chance of
error increases with the length and complexity of the code being used.

A better alternative to the preceding example would be to only define the
customer ID once, thus only requiring one change to perform a different
search. Look at this example:

Input ▼

-- Define @cust_id
DECLARE @cust_id INT;
SET @cust_id = 10001;

-- Get customer name and e-mail
SELECT cust_name, cust_email
FROM customers
WHERE cust_id = @cust_id;

-- Get customer order history
SELECT order_num, order_date
FROM orders
WHERE cust_id = @cust_id
ORDER BY order_date;

Output ▼

cust_name cust_email
------------------------------ ------------------
Coyote Inc. ylee@coyote.com

order_num order_date
----------- -----------------------
20005 2005-09-01 00:00:00.000
20009 2005-10-08 00:00:00.000

Analysis ▼

In this example, the same two SELECT statements are used. But this time a
local variable named @cust_id is first defined and populated. The two
SELECT statements then use that variable in their WHERE clauses as WHERE
cust_id = @cust_id. When processed by SQL Server, the value in the
variable @cust_id will be used to construct the final WHERE clause.

216 LESSON 22: Programming with T-SQL

CAUTION: No Single Quotes when Using Variables

As explained in Lesson 6, “Filtering Data,” strings used in SQL
statements are always enclosed within single quotes. But when
using variables in a SQL statement, do not enclose single quotes
around the variable names, even when using them as strings. Single
quotes are needed when assigning values to string variables, but
should not be used when you are actually using the variables.

TIP: Comment Your Code

You may have noticed that the preceding example contains lines of
code beginning with --. These are comments (messages included in
your SQL code that are ignored by SQL Server), and they help
explain what the code is doing. As the complexity of SQL statements
increases, it is invaluable to be able to read embedded comments
the next time someone has to understand what was done and why.

Using Conditional Processing
Conditional processing is a way to make decisions within programming
code, performing some action based on the decision made. Like most
other programming languages, T-SQL allows developers to write code
where decisions are made at runtime, and what makes this work is the IF
statement.

Let’s start with a basic example. Imagine you are writing a SQL statement
that has to process open orders (perhaps updating values, or copying rows
to another table). This SQL code would need to run regularly, but what it
does might differ based on whether today is a weekday (and thus a day
when you are open for business and processing orders) or part of the
weekend (when your are not processing orders).

Getting the current day of week is easy using T-SQL date and time func-
tions (which were introduced back in Lesson 10, “Using Data
Manipulation Functions”). GetDate() returns the current date and time,
and DatePart() returns a part of a date (the day, the day of week, the
month, and so on). To get the current day of week, you could use

DatePart(dw, GetDate())

The following is a simple IF statement that sets a variable to either 0 or 1,
based on whether or not today is Sunday:

Input ▼

-- Define variables
DECLARE @open BIT

-- Open for business today?
IF DatePart(dw, GetDate()) = 1

SET @open = 0
ELSE

SET @open = 1

-- Output
SELECT @open AS OpenForBusiness

217Using Conditional Processing

Output ▼

OpenForBusiness

1

Analysis ▼

Here, a local variable named @open is declared; it is of type BIT, which
can only contain 0 (false, off, no) or 1 (true, on, yes). The IF statement
compares the current day of week value, as returned by DatePart(dw,
GetDate()), to 1 (Sunday), and sets @open to 0 if true (today is Sunday)
or 1 if false (today is not Sunday). And then finally, @open is returned by a
SELECT statement, although in reality @open would probably be used in
subsequent processing (as opposed to simply being returned).

218 LESSON 22: Programming with T-SQL

NOTE: ELSE Is Optional

The example here uses an ELSE clause to define the code to be
processed if the IF test returns FALSE. The use of ELSE is optional,
and many IF statements do not have an ELSE clause.

Of course, there is a flaw in this code because it only checks to see if
today is Sunday. As such, if today were Saturday, @open would mistakenly
be set to 1. To fix this we need to add an OR to the IF statement:

Input ▼

-- Define variables
DECLARE @dow INT
DECLARE @open BIT

-- Get the day of week
SET @dow = DatePart(dw, GetDate());

-- Open for business today?
IF @dow = 1 OR @dow = 7

SET @open = 0
ELSE

SET @open = 1

-- Output
SELECT @open AS OpenForBusiness

Analysis ▼

There are two changes in this version of the SQL code. An OR operator is
now used in the IF statement so that either 1 (Sunday) or 7 (Saturday)
match the test. In addition, instead of obtaining the current day of week
right in the IF statement, we declare a local variable named @dow (for day
of week) and populate it with the correct value. To understand the value
of this change, look at the alternative:

IF DatePart(dw, GetDate()) = 1 OR DatePart(dw, GetDate()) = 7

So as to not have to obtain the current day of week twice in the IF state-
ment, that code is processed earlier and the result is saved to a variable.

T-SQL supports both AND and OR operators in IF statements, as well as
parentheses, which are used to define the order of evaluation. (Refer back
to Lesson 7, “Advanced Data Filtering,” for an introduction to AND, OR,
and using parentheses to define the order of evaluation.)

Grouping Statements
As you have seen, IF is used to conditionally process whatever directly
follows it. In the previous examples, a single statement was processed if
the IF or ELSE conditions were met. But what would happen if you had to
execute multiple statements? Look at this example:

Input ▼

-- Define variables
DECLARE @dow INT
DECLARE @open BIT, @process BIT

-- Get the day of week
SET @dow = DatePart(dw, GetDate());

-- Open for business today?
IF @dow = 1 OR @dow = 7

SET @open = 0
SET @process = 0

ELSE
SET @open = 1
SET @process = 1

219Grouping Statements

Analysis ▼

If you were to run this code, an error would be generated. Why? Because
once the IF has been processed, the first SET will either be processed (if
the IF condition was met) or ignored (if the IF test failed). But regardless,
the second SET statement will always be executed; it is not dependant on
IF processing (even though the code indentation makes it appear to be).
The error is actually caused by the ELSE statement, because SQL Server
sees it as an extraneous ELSE not tied to any IF.

To solve this problem, two new keywords are needed, BEGIN and END.
Look at this example:

Input ▼

-- Define variables
DECLARE @dow INT
DECLARE @open BIT, @process BIT

-- Get the day of week
SET @dow = DatePart(dw, GetDate());

-- Open for business today?
IF @dow = 1 OR @dow = 7

BEGIN
SET @open = 0
SET @process = 0

END
ELSE

BEGIN
SET @open = 1
SET @process = 1

END

Analysis ▼

Here, BEGIN and END are used to define a block of code. Now, when the IF
or ELSE is processed, the entire block enclosed between BEGIN and END

will be processed, instead of just the subsequent statement.

BEGIN and END are important statements, and are not just used in conjunc-
tion with IF, as will be shown in the upcoming lessons.

220 LESSON 22: Programming with T-SQL

221Using Looping

TIP: Indent Your Code

The code in the previous example uses two levels of indentation, the
first to line up the code executed by IF or ELSE and the second to
clearly define the contents of each BEGIN and END block. There are
no hard-and-fast rules dictating how indentation is to be used; you
can use the style used here, and anything else that helps you better
organize and read your code.

Using Looping
SQL statements are processed sequentially, one at a time, and each being
processed once. Like other programming languages, T-SQL supports
looping, the ability to repeat a block of code as needed. In T-SQL, loop-
ing is accomplished using the WHILE statement.

NOTE: WHILE and Cursors

WHILE tends to be used most frequently in conjunction with cursors,
as will be explained in Lesson 24.

The following is a simple (albeit atypical and rather useless) demonstra-
tion of how to use WHILE:

Input ▼

DECLARE @counter INT

SET @counter=1

WHILE @counter <= 10
BEGIN

PRINT @counter
SET @counter=@counter+1

END

Output ▼

1
2
3
4
5
6
7
8
9
10

Analysis ▼

This example defines a local variable named @counter and initializes it
with a value of 1. The WHILE loop tests to see if @counter is less than or
equal to 10, and as long as that condition is true, the number is displayed
using PRINT and then incremented.

222 LESSON 22: Programming with T-SQL

NOTE: WHILE and BEGIN/END

Just like IF, WHILE repeats only the single statement that follows it.
To repeat multiple lines of code, use BEGIN and END to delimit that
code block, as shown in the previous example.

Two other statements are frequently used in conjunction with WHILE:

. BREAK immediately exits the current WHILE loop (or IF).

. CONTINUE restarts processing at the top of the loop.

Summary
T-SQL supports basic programming constructs, including variables, condi-
tional processing, and looping. In and of themselves, these are not that
useful, but they are very important when used in conjunction with other
SQL Server features, as you will see in the upcoming lessons.

LESSON 23

Working with Stored
Procedures

In this lesson, you’ll learn what stored procedures are, why they are used,
and how they are used. You’ll also look at the basic syntax for creating
and using them.

Understanding Stored
Procedures
Most of the SQL statements that we’ve used thus far are simple in that
they use a single statement against one or more tables. Not all operations
are that simple; often, multiple statements will be needed to perform a
complete operation. For example, consider the following scenario:

. To process an order, checks must be made to ensure that items
are in stock.

. If items are in stock, they need to be reserved so they are not
sold to anyone else, and the available quantity must be reduced
to reflect the correct amount in stock.

. Any items not in stock need to be ordered; this requires some
interaction with the vendor.

. The customer needs to be notified as to which items are in stock
(and can be shipped immediately) and which are backordered.

This is obviously not a complete example, and it is even beyond the scope
of the sample tables we have been using in this book, but it will suffice to

help make a point. Performing this process requires many T-SQL state-
ments against many tables. In addition, the exact statements that need to
be performed and their order are not fixed; they can (and will) vary
according to which items are in stock and which are not.

How would you write this code? You could write each of the statements
individually and execute other statements conditionally, based on the
result. You’d have to do this every time this processing was needed (and
in every application that needed it).

Alternatively, you could create a stored procedure. Stored procedures are
simply collections of one or more T-SQL statements saved for future use.
You can think of them as batch files, although in truth they are more than
that.

Why Use Stored Procedures
Now that you know what stored procedures are, why use them? There are
many reasons, but here are the primary ones:

. To simplify complex operations (such as the previous example)
by encapsulating processes into a single easy-to-use unit.

. To ensure data integrity by not requiring that a series of steps be
created over and over. If all developers and applications use the
same (tried-and-tested) stored procedure, the same code will be
used by all.

An extension of this is to prevent errors. The more steps that
need to be performed, the more likely it is that errors will be
introduced. Preventing errors ensures data consistency.

. To simplify change management. If tables, column names, or
business logic (or just about anything) changes, only the stored
procedure code needs to be updated, and no one else will need
even to be aware that changes were made.

An extension of this is security. Restricting access to underlying
data via stored procedures reduces the chance of data corruption
(unintentional or otherwise).

224 LESSON 23: Working with Stored Procedures

. To improve performance. Stored procedures typically execute
quicker than individual SQL statements.

. Certain T-SQL language elements and SQL Server features are
available only within single requests. Stored procedures can use
these to create code that is more powerful and flexible. (You’ll
see an example of this in the next lesson.)

In other words, there are three primary benefits: simplicity, security, and
performance. Obviously all are extremely important. Before you run off to
turn all your SQL code into stored procedures, here’s the downside:

. Stored procedures tend to be more complex to write than basic
SQL statements, and writing them requires a greater degree of
skill and experience.

. You might not have the security access needed to create stored
procedures. Many database administrators restrict stored proce-
dure–creation rights, allowing users to execute them but not nec-
essarily create them.

Nonetheless, stored procedures are very useful and should be used when-
ever possible.

225Using Stored Procedures

NOTE: Can’t Write Them? You Can Still Use Them

SQL Server distinguishes the security and access needed to write
stored procedures from the security and access needed to execute
them. This is a good thing; even if you can’t (or don’t want to) write
your own stored procedures, you can still execute them when
appropriate.

Using Stored Procedures
Using stored procedures requires knowing how to execute (run) them.
Stored procedures are executed far more often than they are written, so
we’ll start there. And then we’ll look at creating and working with stored
procedures.

Executing Stored Procedures
SQL Server procedures are executed using the EXECUTE statement.
EXECUTE takes the name of the stored procedure and any parameters that
need to be passed to it. Take a look at this example (you won’t be able to
actually run this one until we create it):

Input ▼

EXECUTE productpricing @cheap OUTPUT,
@expensive OUTPUT,
@average OUTPUT

Analysis ▼

Here, a stored procedure named productpricing is executed; it calculates
and returns the lowest, highest, and average product prices into specified
variables.

Stored procedures might or might not display results, as you will see
shortly.

226 LESSON 23: Working with Stored Procedures

TIP: EXECUTE or EXEC

EXECUTE may be shortened to EXEC, but both EXECUTE and EXEC do
the exact same thing.

Creating Stored Procedures
As already explained, writing a stored procedure is not trivial. To give you
a taste for what is involved, let’s look at a simple example, a stored proce-
dure that returns the average product price. Here is the code:

Input ▼

CREATE PROCEDURE productpricing AS
BEGIN

SELECT Avg(prod_price) AS priceaverage
FROM products;

END;

Analysis ▼

The stored procedure is named productpricing and is thus defined with
the statement CREATE PROCEDURE productpricing AS. The BEGIN and END

statements are used to delimit the stored procedure body, and the body
itself is just a simple SELECT statement, using the Avg() function you
learned back in Lesson 11, “Summarizing Data.”

When SQL Server processes this code, it creates a new stored procedure
named productpricing. No data is returned because the code does not
call the stored procedure; it simply creates the code for future use.

So how would you use this stored procedure? Like this:

Input ▼

EXECUTE productpricing;

Output ▼

priceaverage

16.1335

Analysis ▼

EXECUTE productpricing; executes the just-created stored procedure and
displays the returned result.

Dropping Stored Procedures
After they are created, stored procedures remain on the server, ready for
use, until dropped. The DROP command (similar to the statement you saw
in Lesson 20, “Creating and Manipulating Tables”) removes the stored
procedure from the server.

To remove the stored procedure we just created, use the following
statement:

Input ▼

DROP PROCEDURE productpricing;

227Using Stored Procedures

Analysis ▼

This drops (deletes) the just-created stored procedure.

Working with Parameters
productpricing is a really simple stored procedure; it simply displays the
results of a SELECT statement. Typically stored procedures do not display
results; rather, they return them to variables that you specify.

Here is an updated version of productpricing (you’ll not be able to cre-
ate the stored procedure again if you did not previously drop it):

Input ▼

CREATE PROCEDURE productpricing
@price_min MONEY OUTPUT,
@price_max MONEY OUTPUT,
@price_avg MONEY OUTPUT

AS
BEGIN

SELECT @price_min = Min(prod_price)
FROM products;
SELECT @price_max = Max(prod_price)
FROM products;
SELECT @price_avg = Avg(prod_price)
FROM products;

END;

Analysis ▼

This stored procedure accepts three parameters: @price_min to store the
lowest product price, @price_max to store the highest product price, and
@price_avg to store the average product price. Each parameter must have
its type specified (here, MONEY is used). The keyword OUTPUT is used to
specify that this parameter is used to send a value out of the stored proce-
dure (back to the caller). Without OUTPUT, the variables could only have
been used to pass values to the stored procedure. The stored procedure
code itself is enclosed within BEGIN and END statements, as shown before,
and a series of SELECT statements are performed to retrieve the values that
are then saved to the appropriate variables.

228 LESSON 23: Working with Stored Procedures

229Using Stored Procedures

NOTE: Variables Must Start with @

As explained in Lesson 22, “Programming with T-SQL,” all variable
names must begin with @.

NOTE: Parameter Datatypes

The datatypes allowed in stored procedure parameters are the same
as those used in tables. Appendix D, “T-SQL Datatypes,” lists these
types.

To call this updated stored procedure, we must specify three variable
names, as shown here:

Input ▼

DECLARE @cheap MONEY
DECLARE @expensive MONEY
DECLARE @average MONEY

EXECUTE productpricing @cheap OUTPUT,
@expensive OUTPUT,
@average OUTPUT

Analysis ▼

Because the stored procedure expects three parameters, exactly three para-
meters must be passed, no more and no less. Therefore, three parameters
are passed to this EXECUTE statement, and because variables are being used
for the parameters, they must first be declared using DECLARE. These three
variables are where the stored procedure will return results, so each must
be passed as OUTPUT (or values will not be returned in them). These vari-
ables need not be named the same as the receiving variables within the
stored procedure itself, and indeed they are not in this example.

When called, this statement does not actually display any data. Rather, it
returns variables that can then be displayed (or used in other processing).

To display the retrieved average product price, you could do the
following:

Input ▼

SELECT @cheap;

Output ▼

Cheap

2.50

To obtain all three values, you can use the following:

Input ▼

SELECT @cheap, @expensive, @average;

Output ▼

Cheap Expensive Average
------- --------- -------
2.50 55.00 16.1335

Here is another example. This time the example passes parameters to the
stored procedure as well as returns OUTPUT parameters. ordertotal
accepts an order number and returns the total for that order:

Input ▼

CREATE PROCEDURE ordertotal
@order_num INT,
@order_total MONEY OUTPUT

AS
BEGIN

SELECT @order_total = Sum(item_price*quantity)
FROM orderitems
WHERE order_num = @order_num;

END;

230 LESSON 23: Working with Stored Procedures

Analysis ▼

@order_num is used to pass a value to the stored procedure, so OUTPUT is
not needed. @order_total is defined as OUTPUT because the total is to be
returned from the stored procedure. The SELECT statement uses both of
these parameters, the WHERE clause uses @order_num to select the right
rows, and @order_total stores the calculated total.

To invoke this new stored procedure, you can use the following:

Input ▼

DECLARE @order_total MONEY
EXECUTE ordertotal 20005, @order_total OUTPUT
SELECT @order_total

Output ▼

149.87

Analysis ▼

Two parameters must be passed to ordertotal; the first is the order num-
ber and the second is the name of the variable that will contain the calcu-
lated total. Here, one of those parameters (the order number) is a static
value (not a variable).

To obtain a display for the total of another order, you would need to call
the stored procedure again and then redisplay the variable:

Input ▼

DECLARE @order_total MONEY
EXECUTE ordertotal 20009, @order_total OUTPUT
SELECT @order_total

Building Intelligent Stored Procedures
All of the stored procedures used thus far have basically encapsulated
simple T-SQL SELECT statements. And although they are all valid

231Using Stored Procedures

examples of stored procedures, they really don’t do anything more than
what you could do with those statements directly (if anything, they just
make things a little more complex). The real power of stored procedures
is realized when business rules and intelligent processing are included
within them.

Consider this scenario: You need to obtain order totals as before, but also
need to add sales tax to the total, but only for some customers (perhaps
the ones in your own state). Now you need to do several things:

. Obtain the total (as before).

. Conditionally add tax to the total.

. Return the total (with or without tax).

That’s a perfect job for a stored procedure:

Input ▼

-- Name: ordertotal
-- Parameters: @order_num = order number
-- @taxable = 0 if not taxable, 1 if taxable
-- @order_total = order total variable

CREATE PROCEDURE ordertotal
@order_num INT,
@taxable BIT,
@order_total MONEY OUTPUT

AS
BEGIN

-- Declare variable for total
DECLARE @total MONEY;
-- Declare tax percentage
DECLARE @taxrate INT;
-- Set tax rate (adjust as needed)
SET @taxrate = 6;

-- Get the order total
SELECT @total = Sum(item_price*quantity)
FROM orderitems
WHERE order_num = @order_num

232 LESSON 23: Working with Stored Procedures

-- Is this taxable?
IF @taxable = 1

-- Yes, so add taxrate to the total
SET @total=@total+(@total/100*@taxrate);

-- And finally, save to output variable
SELECT @order_total = @total;

END;

233Using Stored Procedures

TIP: First DROP If Needed

You may need to DROP the existing stored procedure before you can
save this new version.

Analysis ▼

The stored procedure has changed dramatically. First of all, comments
have been added throughout (preceded by -- , as explained in Lesson 22).
An additional parameter has been added, @taxable of type BIT (which
specifies 1 if taxable, 0 if not). Within the stored procedure body, two
local variables are defined using DECLARE statements, and @taxrate in this
example is set to 6%. The SELECT has changed, so the result is stored in
@total (a local variable) instead of @order_total. Then an IF statement
checks to see if @taxable is true, and if it is, a SET statement is used to
add the tax to local variable @total. And finally, @total (which might or
might not have had tax added) is saved to @order_total using another
SELECT statement.

This is obviously a more sophisticated and powerful stored procedure. To
try it out, use the following two statements:

Input ▼

DECLARE @order_total MONEY
EXECUTE ordertotal 20005, 0, @order_total OUTPUT
SELECT @order_total

Output ▼

149.87

Input ▼

DECLARE @order_total MONEY
EXECUTE ordertotal 20005, 1, @order_total OUTPUT
SELECT @order_total

Output ▼

158.8622

Analysis ▼

The only difference between the two EXECUTE calls is the second parame-
ter: 0 (false) is passed for the first, and 1 (true) is passed for the second.
This makes it easy to conditionally add tax to the order total.

Summary
In this lesson, you learned what stored procedures are and why they are
used. You also learned the basics of stored procedure execution and cre-
ation syntax, and you saw some of the ways these can be used. Stored
procedures are often used in conjunction with cursor operations, and so
we’ll look at cursors in the next lesson.

234 LESSON 23: Working with Stored Procedures

LESSON 24

Using Cursors

In this lesson, you’ll learn what cursors are and how to use them.

Understanding Cursors
As you have seen in previous lessons, T-SQL retrieval operations work
with sets of rows known as result sets. The rows returned are all the rows
that match a SQL statement, zero or more of them. Using simple SELECT
statements, there is no way to get the first row, the next row, or the previ-
ous 10 rows, for example. Nor is there an easy way to process all rows,
one at a time (as opposed to all of them in a batch).

Sometimes there is a need to step through rows forward or backward, and
one or more at a time. This is what cursors are used for. A cursor is a
database query stored in SQL Server, not a SELECT statement, but the
result set retrieved by that statement. Once the cursor is stored, applica-
tions can scroll or browse up and down through the data as needed.

Cursors are used primarily by interactive applications in which users need
to scroll up and down through screens of data, browsing or making
changes.

Working with Cursors
Using cursors involves several distinct steps:

1. Before a cursor can be used, it must be declared (defined). This
process does not actually retrieve any data; it merely defines the
SELECT statement to be used.

2. After it is declared, the cursor must be opened for use. This
process actually retrieves the data using the previously defined
SELECT statement.

3. With the cursor populated with data, individual rows can be
fetched (retrieved) as needed.

4. Once the desired data has been fetched, the cursor must be
closed.

5. Finally, the cursor must be removed.

After a cursor is declared, it may be opened and closed as often as needed
(until it is removed). After the cursor is open, fetch operations can be per-
formed as often as needed.

Creating and Removing Cursors
Cursors are created using the DECLARE statement (discussed in Lesson 22,
“Programming with T-SQL”). DECLARE names the cursor and takes a
SELECT statement, complete with WHERE and other clauses if needed. When
a cursor is no longer needed, it must be removed using DEALLOCATE.

236 LESSON 24: Using Cursors

NOTE: Implicit DEALLOCATE

DEALLOCATE can actually be omitted, in which case SQL Server will
automatically remove the cursor when it goes out of scope.

For example, this statement defines a cursor named orders_cursor using
a SELECT statement that retrieves all order numbers:

Input ▼

DECLARE orders_cursor CURSOR
FOR
SELECT order_num FROM orders ORDER BY order_num;

DEALLOCATE orders_cursor;

Analysis ▼

A DECLARE statement is used to define and name the cursor, in this case,
orders_cursor. Nothing is done with the cursor, and it is immediately
removed using DEALLOCATE.

237Working with Cursors

NOTE: Can Only DECLARE Once

Once a cursor has been declared, it cannot be declared again, even
if the DECLARE statement is identical to the one used previously. To
change a cursor, you must first remove it with DEALLOCATE and then
declare it again with DECLARE.

Now that the cursor is defined, it is ready to be opened.

Opening and Closing Cursors
Cursors are opened using the OPEN statement, like this:

Input ▼

OPEN orders_cursor;

Analysis ▼

When the OPEN statement is processed, the query is executed, and the
retrieved data is stored for subsequent browsing and scrolling.

After cursor processing is complete, the cursor should be closed using the
CLOSE statement, as follows:

Input ▼

CLOSE orders_cursor;

Analysis ▼

CLOSE frees up internal memory and resources used by the cursor, so
every cursor should be closed when it is no longer needed.

After a cursor is closed, it cannot be reused without being opened again.
However, a cursor does not need to be declared again to be used; an OPEN
statement is sufficient (so long as the cursor has not been removed with
DEALLOCATE).

Here is an updated version of the previous example:

Input ▼

-- Define the cursor
DECLARE orders_cursor CURSOR
FOR
SELECT order_num FROM orders ORDER BY order_num;

-- Open cursor (retrieve data)
OPEN orders_cursor;

-- Close cursor
CLOSE orders_cursor

-- And finally, remove it
DEALLOCATE orders_cursor;

Analysis ▼

This stored procedure declares, opens, closes, and then removes a cursor.
However, nothing is done with the retrieved data.

Using Cursor Data
After a cursor is opened, you can access each row individually using a
FETCH statement. FETCH specifies the cursor to be used and where retrieved
data should be stored. It also advances the internal row pointer within the
cursor so the next FETCH statement will retrieve the next row (and not the
same one over and over).

The first example retrieves a single row from the cursor (the first row):

238 LESSON 24: Using Cursors

Input ▼

-- Local variables
DECLARE @order_num INT;

-- Define the cursor
DECLARE orders_cursor CURSOR
FOR
SELECT order_num FROM orders ORDER BY order_num;

-- Open cursor (retrieve data)
OPEN orders_cursor;

-- Perform the first fetch (get first row)
FETCH NEXT FROM orders_cursor INTO @order_num;

-- Close cursor
CLOSE orders_cursor

-- And finally, remove it
DEALLOCATE orders_cursor;

Analysis ▼

Here, FETCH is used to retrieve the order_num column of the current row
(it’ll start at the first row automatically) and place it into a local declared
variable named @order_num. Nothing is done with the retrieved data.

239Working with Cursors

NOTE: What to Fetch?

The FETCH statements in this example use FETCH NEXT to fetch the
next row. This is the most frequently used FETCH, but other FETCH
options are available. These include FETCH PRIOR to retrieve the
previous row, FETCH FIRST and FETCH LAST to retrieve the first and
last rows, respectively, FETCH ABSOLUTE to fetch a specific row num-
ber starting from the top, and FETCH RELATIVE to fetch a specific
row number starting from the current row.

In the next example, the retrieved data is looped through from the first
row to the last:

Input ▼

-- Local variables
DECLARE @order_num INT;

-- Define the cursor
DECLARE orders_cursor CURSOR
FOR
SELECT order_num FROM orders ORDER BY order_num;

-- Open cursor (retrieve data)
OPEN orders_cursor;

-- Perform the first fetch (get first row)
FETCH NEXT FROM orders_cursor INTO @order_num;

-- Check @@FETCH_STATUS to see if there are any more rows
-- to fetch.
WHILE @@FETCH_STATUS = 0
BEGIN

-- This is executed as long as the previous fetch succeeds.
FETCH NEXT FROM orders_cursor INTO @order_num;

END

-- Close cursor
CLOSE orders_cursor

-- And finally, remove it
DEALLOCATE orders_cursor;

Analysis ▼

Like the previous example, this code uses FETCH to retrieve the current
order_num and place it into a declared variable named @order_num.
Unlike the previous example, the FETCH here is followed by a WHILE loop,
so it is repeated over and over. When does the looping terminate? Each
time FETCH is used, an internal function named @@FETCH_STATUS obtains a
status code. @@FETCH_STATUS will return 0 if the FETCH succeeded, and a
negative value otherwise. So the WHILE loop simply continues WHILE
@@FETCH_STATUS = 0.

240 LESSON 24: Using Cursors

With this functionality in place, you can now place any needed processing
inside the loop (after the BEGIN statement and before the next FETCH).

To put this all together, here is one further revision of our sample cursor,
this time with some actual processing of fetched data:

Input ▼

-- Local variables
DECLARE @order_num INT;
DECLARE @order_total MONEY;
DECLARE @total MONEY;

-- Initialize @total
SET @total=0;

-- Define the cursor
DECLARE orders_cursor CURSOR
FOR
SELECT order_num FROM orders ORDER BY order_num;

-- Open cursor (retrieve data)
OPEN orders_cursor;

-- Perform the first fetch (get first row)
FETCH NEXT FROM orders_cursor INTO @order_num;

-- Check @@FETCH_STATUS to see if there are any more rows
-- to fetch.
WHILE @@FETCH_STATUS = 0
BEGIN

-- Get this order total (including tax)
EXECUTE ordertotal @order_num, 1, @order_total OUTPUT

-- Add this order to the total
SET @total = @total + @order_total

-- Get next row
FETCH NEXT FROM orders_cursor INTO @order_num;

END

-- Close cursor
CLOSE orders_cursor

241Working with Cursors

-- And finally, remove it
DEALLOCATE orders_cursor;

-- And finally display calculated total
SELECT @total AS GrantTotal;

Analysis ▼

In this example, we’ve declared a variable named @order_total (to store
the total for each order) and another named @total (to store the running
total of all orders). FETCH fetches each @order_num as it did before, and
then EXECUTE is used to execute a stored procedure (the one we created in
the previous lesson) to calculate the total with tax for each order (the
result of which is stored in @order_total). Each time an @order_total is
retrieved, it is added to @total using a SET statement. And finally, the
grant total is returned using a SELECT.

And there you have it, a complete working example of cursors, row-by-
row processing, and even stored procedures execution.

Summary
In this lesson, you learned what cursors are and why they are used. You
also saw examples demonstrating basic cursor use, as well as techniques
for looping through cursor results and for row-by-row processing.

242 LESSON 24: Using Cursors

LESSON 25

Using Triggers

In this lesson, you’ll learn what triggers are, why they are used, and how.
You’ll also look at the syntax for creating and using them.

Understanding Triggers
T-SQL statements are executed when needed, as are stored procedures.
But what if you want a statement (or statements) to be executed automati-
cally when events occur? Here are some examples:

. Every time a customer is added to a database table, check that
the phone number is formatted correctly and that the state abbre-
viation is in uppercase.

. Every time a product is ordered, subtract the ordered quantity
from the number in stock.

. Whenever a row is deleted, save a copy in an archive table.

What all these examples have in common is that they need to be
processed automatically whenever a table change occurs. And that is
exactly what triggers are. A trigger is a T-SQL statement (or a group of
statements enclosed within BEGIN and END statements) that is automatical-
ly executed by SQL Server in response to any of these statements:

. DELETE

. INSERT

. UPDATE

No other T-SQL statements support triggers.

244 LESSON 25: Using Triggers

NOTE: Tables and Views

Triggers are supported on tables and views (but not on temporary
tables).

Creating Triggers
When creating a trigger, you need to specify three pieces of information:

. The unique trigger name

. The table to which the trigger is to be associated

. The action that the trigger should respond to (DELETE, INSERT, or
UPDATE)

Triggers are created using the CREATE TRIGGER statement. Here is a really
simple example:

Input ▼

CREATE TRIGGER newproduct_trigger ON products
AFTER INSERT
AS
SELECT ‘Product added’;

Analysis ▼

CREATE TRIGGER is used to create the new trigger named newproduct_
trigger. This trigger is defined as AFTER INSERT, so the trigger will
execute after a successful INSERT statement has been executed, and the
text Product added will be displayed once for each row inserted.

To test this trigger, use the INSERT statement to add one or more rows to
products; you’ll see the Product added message displayed for each suc-
cessful insertion.

Triggers are defined per event per table, and only one trigger per event per
table is allowed. As such, up to three triggers are supported per table (one
for each of INSERT, UPDATE, and DELETE).

245Understanding Triggers

TIP: Multiple Events per Trigger

A single trigger can be associated with multiple events, so if you
need a trigger to be executed for both INSERT and UPDATE opera-
tions, you can define it as AFTER INSERT, UPDATE.

NOTE: INSTEAD OF Triggers

Most triggers are AFTER triggers; they are executed after an event
occurs. SQL Server supports another type of trigger called an
INSTEAD OF trigger, which, if defined, is invoked instead of the origi-
nal T-SQL statement. For example, if you want to never allow rows to
be deleted, you could create an INSTEAD OF trigger that replaces
DELETE on a specific table with a T-SQL statement that updates the
rows to make them inactive (perhaps by setting a flag in those
rows). INSTEAD OF triggers are not covered in this lesson.

Dropping Triggers
By now the syntax for dropping a trigger should be self-apparent. To drop
a trigger, use the DROP TRIGGER statement, as shown here:

Input ▼

DROP TRIGGER newproduct_trigger;

Analysis ▼

This example removes trigger newproduct_trigger.

TIP: Updating Triggers

Triggers can be updated using ALTER TRIGGER, or they can be
dropped and re-created.

Enabling and Disabling Triggers
It is sometimes necessary to be able to execute T-SQL statements without
executing defined triggers. Rather than dropping the triggers and then
having to re-create them, SQL Server allows you to disable triggers and
then enable them as needed.

To disable a trigger, use the DISABLE TRIGGER statement, as shown here:

Input ▼

DISABLE TRIGGER newproduct_trigger ON products;

To reenable a trigger, use the ENABLE TRIGGER statement, as shown here:

Input ▼

ENABLE TRIGGER newproduct_trigger ON products;

Determining Trigger Assignments
Triggers are very useful and very powerful. But they can also change the
way SQL Server behaves, executing code that you may be unaware of.
And because most triggers execute silently (they provide no feedback), it
can be difficult to determine whether triggers are running at any given
time.

To solve this problem, you can use the built-in stored procedure SP_
HELPTRIGGER:

Input ▼

SP_HELPTRIGGER products;

Analysis ▼

SP_HELPTRIGGER takes the name of a table and returns a list of triggers (if
any are defined), with flags indicating the trigger type. If you were to run
this code after creating the newproduct trigger discussed above, ISINSERT
and ISAFTER would both be 1 because we created that trigger AFTER
INSERT.

246 LESSON 25: Using Triggers

Using Triggers
With the basics covered, we will now look at each of the supported trigger
types and the differences between them.

INSERT Triggers
INSERT triggers are executed after an INSERT statement is executed. Within
INSERT trigger code, you can refer to a virtual table named INSERTED to
access the rows being inserted.

Here’s an example (a really useful one, actually). IDENTITY columns have
values that are automatically assigned by SQL Server. Lesson 20,
“Creating and Manipulating Tables,” suggested several ways to determine
the newly generated value, but here is an even better solution:

Input ▼

CREATE TRIGGER neworder_trigger ON orders
AFTER INSERT
AS
SELECT @@IDENTITY AS order_num;

Analysis ▼

The code creates a trigger named neworder_trigger that is executed
AFTER INSERT on the table orders. When a new order is saved in orders,
SQL Server generates a new order number and saves it in order_num. This
trigger simply obtains this value from @@IDENTITY and returns it. Using
this trigger for every insertion into orders will always return the new
order number.

To test this trigger, try inserting a new order, like this:

Input ▼

INSERT INTO orders(order_date, cust_id)
VALUES(GetDate(), 10001);

247Using Triggers

Output ▼

order_num

20010

Analysis ▼

orders contains three columns. order_date and cust_id must be speci-
fied, order_num is automatically generated by SQL Server, and order_num
is now returned automatically.

DELETE Triggers
DELETE triggers are executed after a DELETE statement is executed. Within
DELETE trigger code, you can refer to a virtual table named DELETED to
access the rows being deleted.

The following example demonstrates the use of DELETED to save deleted
rows into an archive table:

Input ▼

CREATE TRIGGER deleteorder_trigger ON orders
AFTER DELETE
AS
BEGIN

INSERT INTO orders_archive(order_num, order_date, cust_id)
SELECT order_num, order_date, cust_id FROM DELETED;

END;

Analysis ▼

This trigger is executed when rows are deleted from the orders table. It
uses an INSERT SELECT statement to save the rows in DELETE into an
archive table named orders_archive. (To actually use this example,
you’ll need to create a table named orders_archive with the same
columns as orders.)

248 LESSON 25: Using Triggers

249Using Triggers

NOTE: Multistatement Triggers

You’ll notice that trigger deleteorder_trigger uses BEGIN and END
statements to mark the trigger body. This is actually not necessary
in this example, although it does no harm being there. The advan-
tage of using a BEGIN END block is that the trigger would then be
able to accommodate multiple SQL statements (one after the other
within the BEGIN END block). BEGIN END was introduced in Lesson
22, “Programming with T-SQL.”

UPDATE Triggers
UPDATE triggers are executed after an UPDATE statement is executed. Within
UPDATE trigger code, you can refer to a virtual table named DELETED to
access the previous (pre-UPDATE statement) values and INSERTED to access
the new updated values.

The following example ensures that state abbreviations are always in
uppercase (regardless of how they were actually specified in the UPDATE
statement):

Input ▼

CREATE TRIGGER vendor_trigger ON vendors
AFTER INSERT, UPDATE
AS
BEGIN

UPDATE vendors
SET vend_state=Upper(vend_state)
WHERE vend_id IN (SELECT vend_id FROM INSERTED);

END;

Analysis ▼

This trigger is executed AFTER INSERT, UPDATE. Each time rows are
inserted or updated, the values in vend_state are replaced with
Upper(vend_state).

More on Triggers
Before we wrap up this lesson, here are some important points to keep in
mind when using triggers:

. Creating triggers might require special security access. However,
trigger execution is automatic. If an INSERT, UPDATE, or DELETE
statement may be executed, any associated triggers will be exe-
cuted, too.

. Triggers should be used to ensure data consistency (case, for-
matting, and so on). The advantage of performing this type of
processing in a trigger is that it always happens, and happens
transparently, regardless of client application.

. One very interesting use for triggers is in creating an audit trail.
Using triggers, it would be very easy to log changes (even before
and after states if needed) to another table.

. Triggers can call stored procedures as well as most T-SQL
statements.

Summary
In this lesson, you learned what triggers are and why they are used. You
also saw examples of triggers used for INSERT, DELETE, and UPDATE
operations.

250 LESSON 25: Using Triggers

LESSON 26

Managing Transaction
Processing

In this lesson, you’ll learn what transactions are and how to use COMMIT
and ROLLBACK statements to manage transaction processing.

Understanding Transaction
Processing
Transaction processing is used to maintain database integrity by ensuring
that batches of T-SQL operations execute completely or not at all.

As explained back in Lesson 14, “Joining Tables,” relational databases are
designed so data is stored in multiple tables to facilitate easier data
manipulation, management, and reuse. Without going into the how and
why of relational database design, take it as a given that well-designed
database schemas are relational to some degree.

The orders tables you’ve been using in prior lessons are a good example
of this. Orders are stored in two tables: orders stores actual orders, and
orderitems stores the individual items ordered. These two tables are
related to each other using unique IDs called primary keys (as discussed
in Lesson 1, “Understanding SQL”). These tables, in turn, are related to
other tables containing customer and product information.

The process of adding an order to the system is as follows:

1. Check whether the customer is already in the database (present
in the customers table). If not, add him or her.

2. Retrieve the customer’s ID.

3. Add a row to the orders table associating it with the customer ID.

4. Retrieve the new order ID assigned in the orders table.

5. Add one row to the orderitems table for each item ordered,
associating it with the orders table by the retrieved ID (and with
the products table by product ID).

Now imagine that some database failure (for example, out of disk space,
security restrictions, table locks) prevents this entire sequence from com-
pleting. What would happen to your data?

Well, if the failure occurred after the customer was added and before the
orders table was added, there is no real problem. It is perfectly valid to
have customers without orders. When you run the sequence again, the
inserted customer record will be retrieved and used. You can effectively
pick up where you left off.

But what if the failure occurred after the orders row was added, but
before the orderitems rows were added? Now you’d have an empty order
sitting in your database.

Worse, what if the system failed during adding the orderitems rows?
Now you’d end up with a partial order in your database, but you wouldn’t
know it.

How do you solve this problem? That’s where transaction processing
comes in. Transaction processing is a mechanism used to manage sets of
T-SQL operations that must be executed in batches to ensure that databas-
es never contain the results of partial operations. With transaction process-
ing, you can ensure that sets of operations are not aborted mid-processing;
they either execute in their entirety or not at all (unless explicitly instruct-
ed otherwise). If no error occurs, the entire set of statements is committed
(written) to the database tables. If an error does occur, a rollback (undo)
can occur to restore the database to a known and safe state.

So, looking at the same example, this is how the process would work:

1. Check whether the customer is already in the database; if not,
add him or her.

2. Commit the customer information.

252 LESSON 26: Managing Transaction Processing

3. Retrieve the customer’s ID.

4. Add a row to the orders table.

5. If a failure occurs while adding the row to orders, roll back.

6. Retrieve the new order ID assigned in the orders table.

7. Add one row to the orderitems table for each item ordered.

8. If a failure occurs while adding rows to orderitems, roll back all
the orderitems rows added and the orders row.

9. Commit the order information.

When working with transactions and transaction processing, you’ll notice
a few keywords that keep reappearing. Here are the terms you need to
know:

. Transaction: A block of SQL statements

. Rollback: The process of undoing specified SQL statements

. Commit: Writing unsaved SQL statements to the database
tables

. Savepoint: A temporary placeholder in a transaction set to
which you can issue a rollback (as opposed to rolling back an
entire transaction)

Controlling Transactions
Now that you know what transaction processing is, let’s look at what is
involved in managing transactions.

The key to managing transactions involves breaking your SQL statements
into logical chunks and explicitly stating when data should be rolled back
and when it should not.

The T-SQL statement used to mark the start of a transaction is

Input ▼

253Controlling Transactions

BEGIN TRANSACTION;

Transactions may optionally be named. This is useful when you are work-
ing with multiple transactions so as to be able to explicitly define the
transaction to be committed if rolled back.

Using ROLLBACK
The T-SQL ROLLBACK command is used to roll back (undo) T-SQL state-
ments, as shown in this next statement (feel free to try this one, and yes, I
know the code is scary):

Input ▼

-- What is in orderitems?
SELECT * FROM orderitems;
-- Start the transaction
BEGIN TRANSACTION;
-- Delete all rows from orderitems
DELETE FROM orderitems;
-- Verify that they are gone
SELECT * FROM orderitems;
-- Now rollback the transaction
ROLLBACK;
-- And the deleted rows should all be back
SELECT * FROM orderitems;

Analysis ▼

This example starts by displaying the contents of the orderitems table.
First, a SELECT is performed to show that the table is not empty. Then a
transaction is started, and all of the rows in orderitems are deleted with a
DELETE statement. Another SELECT verifies that, indeed, orderitems is
empty. Then a ROLLBACK statement is used to roll back all statements until
the BEGIN TRANSACTION, and the final SELECT shows that the table is no
longer empty.

254 LESSON 26: Managing Transaction Processing

255Controlling Transactions

Obviously, ROLLBACK can only be used within a transaction (after a BEGIN
TRANSACTION command has been issued).

TIP: Which Statements Can You Roll Back?

Transaction processing is used to manage INSERT, UPDATE, and
DELETE statements. You cannot roll back SELECT statements. (There
would not be much point in doing so anyway.) You cannot roll back
CREATE and DROP operations. These statements may be used in a
transaction block, but if you perform a rollback, they will not be
undone.

Using COMMIT
T-SQL statements are usually executed and written directly to the data-
base tables. This is known as an autocommit; the commit (write or save)
operation happens automatically.

Within a transaction block, however, commits do not occur implicitly. To
force an explicit commit, you use the COMMIT statement, as shown here:

Input ▼

BEGIN TRANSACTION;
DELETE FROM orderitems WHERE order_num = 20010;
DELETE FROM orders WHERE order_num = 20010;
COMMIT;

Analysis ▼

In this example, order number 20010 is deleted entirely from the system.
Because this involves updating two database tables, orders and
orderitems, a transaction block is used to ensure that the order is not par-
tially deleted. The final COMMIT statement writes the change only if no
error occurred. If the first DELETE worked, but the second failed, the
DELETE would not be committed. (It would effectively be automatically
undone.)

This example uses a single COMMIT at the ends of the statement batch.

256 LESSON 26: Managing Transaction Processing

More complex examples often use multiple ROLLBACK and COMMIT state-
ments to write changes whenever needed (and only when wanted).

NOTE: Implicit Transaction Closes

After a COMMIT or ROLLBACK statement has been executed, the
transaction is automatically closed (and future changes will implicitly
commit).

Using Savepoints
Simple ROLLBACK and COMMIT statements enable you to write or undo an
entire transaction. Although this works for simple transactions, more com-
plex transactions might require partial commits or rollbacks.

For example, the process of adding an order described previously is a sin-
gle transaction. If an error occurs, you only want to roll back to the point
before the orders row was added. You do not want to roll back the addi-
tion to the customers table (if there was one).

To support the rollback of partial transactions, you must be able to put
placeholders at strategic locations in the transaction block. Then, if a roll-
back is required, you can roll back to one of the placeholders.

These placeholders are called savepoints, and to create one use the SAVE
TRANSACTION statement, as follows:

Input ▼

SAVE TRANSACTION delete1;

NOTE: Savepoint Names

Generally, each savepoint should a unique name that identifies it so
that, when you roll back, SQL Server knows where you are rolling
back to. In practice, however, savepoint names may be reused, in
which case SQL Server will roll back to the most recent savepoint of
that name.

To roll back to this savepoint, do the following:

Input ▼

ROLLBACK TRANSACTION delete1;

257Controlling Transactions

To roll back to the very beginning of the transaction, do the following:

Input ▼

ROLLBACK TRANSACTION;

TIP: The More Savepoints the Better

You can have as many savepoints as you’d like within your T-SQL
code, and the more the better. Why? Because the more savepoints
you have, the more flexibility you have in managing rollbacks exactly
as you need them.

Changing Autocommit Behavior
As already explained, the default SQL Server behavior is to automatically
commit any and all changes. In other words, any time you execute a
T-SQL statement, that statement is actually being performed against the
tables, and the changes made occur immediately. To instruct SQL Server
to not automatically commit changes, you need to use the following
statement:

Input ▼

SET IMPLICIT_TRANSACTIONS ON;

Analysis ▼

The IMPLICIT_TRANSACTIONS setting determines whether changes are
committed automatically without requiring a manual COMMIT statement.
Setting IMPLICIT_TRANSACTIONS to ON instructs SQL Server to not auto-
matically commit changes (until the flag is set back to OFF).

Summary
In this lesson, you learned that transactions are blocks of SQL statements
that must be executed as a batch. You learned how to use the COMMIT and
ROLLBACK statements to explicitly manage when data is written and when
it is undone. You also learned how to use savepoints to provide a greater
level of control over rollback operations.

258 LESSON 26: Managing Transaction Processing

LESSON 27

Working with XML

In this lesson, you’ll learn how to generate well-formed XML from rela-
tional data. You will also learn about the XML datatype and how it is
used.

Understanding SQL Server XML
Support

NOTE: SQL Server 2005 Only

This lesson covers functionality that was introduced in SQL Server
2005 and is not available in earlier versions of SQL Server.

XML has become a standard mechanism by which to exchange, distribute,
and persist data. Although SQL Server is a relational DBMS, and rela-
tional data is very different from hierarchical XML data, there are often
compelling reasons to obtain SQL Server data as XML, and to store XML
data within SQL Server tables.

Here are the three primary areas of interest concerning SQL Server’s
XML support:

. Using SELECT to retrieve data, returning it as well-formed XML.

. Storing well-formed XML within specific columns in database
tables.

. Being able to search for data based on content within specific
XML elements.

260 LESSON 27: Working with XML

NOTE: Just the Basics

This lesson does not attempt to teach XML itself. XML (including the
use of XPath to work with XML data, and XQuery to search XML
data) is a broad topic, and is the subject of many books. If you need
to work with XML data, you should definitely take the time to better
understand XML data structures and how to work with them.

Retrieving Data as XML
Relational data stored in SQL Server tables can be retrieved as well-
formed XML, ready for consumption by an XML client or application of
your choice. To retrieve data as XML, use SELECT with an added FOR XML
clause.

Here is a simple example:

Input ▼

SELECT vend_id, RTrim(vend_name) AS vend_name
FROM vendors
ORDER BY vend_name
FOR XML AUTO;

Output ▼

<vendors vend_id=”1003” vend_name=”ACME” />
<vendors vend_id=”1001” vend_name=”Anvils R Us” />
<vendors vend_id=”1004” vend_name=”Furball Inc.” />
<vendors vend_id=”1005” vend_name=”Jet Set” />
<vendors vend_id=”1006” vend_name=”Jouets Et Ours” />
<vendors vend_id=”1002” vend_name=”LT Supplies” />

Analysis ▼

FOR XML instructs SQL Server to generate XML output. When generating
XML, you’d usually need to define the shape of the desired XML, but
AUTO simplifies that by creating output based on the columns and order
used. Here, each vendor is listed as a separate XML element, the table

name vendors is used as the element name, and the two selected columns
are used as attributes.

Here is a slightly more complex example:

Input ▼

SELECT cust_name, orders.order_num, products.prod_id,
prod_name

FROM customers, orders, orderitems, products
WHERE customers.cust_id=orders.cust_id
AND orders.order_num=orderitems.order_num
AND orderitems.prod_id=products.prod_id
ORDER BY cust_name, orders.order_num, products.prod_id
FOR XML AUTO;

Output ▼

<customers cust_name=”Coyote Inc.”>
<orders order_num=”20005”>
<products prod_id=”ANV01” prod_name=”.5 ton anvil” />
<products prod_id=”ANV02” prod_name=”1 ton anvil” />
<products prod_id=”FB” prod_name=”Bird seed” />
<products prod_id=”TNT2” prod_name=”TNT (5 sticks)” />

</orders>
<orders order_num=”20009”>
<products prod_id=”ANV03” prod_name=”2 ton anvil” />
<products prod_id=”FB” prod_name=”Bird seed” />
<products prod_id=”OL1” prod_name=”Oil can” />
<products prod_id=”SLING” prod_name=”Sling” />

</orders>
</customers>
<customers cust_name=”E Fudd”>
<orders order_num=”20008”>
<products prod_id=”FC” prod_name=”Carrots” />

</orders>
</customers>
<customers cust_name=”Wascals”>
<orders order_num=”20006”>
<products prod_id=”JP2000” prod_name=”JetPack 2000” />

</orders>
</customers>
<customers cust_name=”Yosemite Place”>
<orders order_num=”20007”>
<products prod_id=”TNT2” prod_name=”TNT (5 sticks) “ />

</orders>
</customers>

261Retrieving Data as XML

Analysis ▼

Here, four tables are joined to return customers, orders placed by each
customer, and the products in each order. The columns defined in the
ORDER BY clause define the shape of the generated XML, resulting in a
top-level <customers> tag containing one or more <orders> tags, which
in turn contain one or more <products> tags.

Although AUTO may generate the desired XML, a bit more control is pos-
sible using the RAW format, as shown here:

Input ▼

SELECT vend_id AS id, RTrim(vend_name) AS name
FROM vendors
ORDER BY vend_name
FOR XML RAW(‘vendor’), ROOT(‘vendors’), ELEMENTS;

Output ▼

<vendors>
<vendor>
<id>1003</id>
<name>ACME</name>

</vendor>
<vendor>
<id>1001</id>
<name>Anvils R Us</name>

</vendor>
<vendor>
<id>1004</id>
<name>Furball Inc.</name>

</vendor>
<vendor>
<id>1005</id>
<name>Jet Set</name>

</vendor>
<vendor>
<id>1006</id>
<name>Jouets Et Ours</name>

</vendor>
<vendor>
<id>1002</id>
<name>LT Supplies</name>

</vendor>
</vendors>

262 LESSON 27: Working with XML

Analysis ▼

This example demonstrates several useful techniques. The ELEMENTS key-
word causes the columns to be embedded as child elements instead of tag
attributes. RAW allows the row tag name to be specified, and ROOT is used
to specify the top-level (root) name. In addition, column aliases are used
to explicitly control the generated element names.

For even greater control, EXPLICIT mode can be used. EXPLICIT places
the burden of forming the XML shape entirely on you, but in doing so it
allows you to mix the use of elements and attributes, provide additional
levels of nesting, and more. Here is an example:

Input ▼

SELECT 1 AS tag,
NULL AS parent,
vend_id AS [vendor!1!id],
RTrim(vend_name) AS [vendor!1!name!ELEMENT]

FROM vendors
ORDER BY vend_name
FOR XML EXPLICIT, ROOT(‘vendors’);

Output ▼

<vendors>
<vendor id=”1003”>
<name>ACME</name>

</vendor>
<vendor id=”1001”>
<name>Anvils R Us</name>

</vendor>
<vendor id=”1004”>
<name>Furball Inc.</name>

</vendor>
<vendor id=”1005”>
<name>Jet Set</name>

</vendor>
<vendor id=”1006”>
<name>Jouets Et Ours</name>

</vendor>
<vendor id=”1002”>
<name>LT Supplies</name>

</vendor>
</vendors>

263Retrieving Data as XML

Analysis ▼

When EXPLICIT is used, the SELECT statement must define a tag and a
parent, and then the columns to be processed. Each column must be in
the format tagname!tagid!attributename. In addition, optional attributes
may be defined per column, as is the case with vend_name, which is
renamed to name and defined as an ELEMENT.

264 LESSON 27: Working with XML

TIP: XPath Is Another Option

XPath is a language used for accessing XML data. For the ideal com-
bination of power and simplicity when generating XML, you may want
to use FOR XML PATH mode, which allows you to define XPath
expressions to structure the output. Unfortunately, coverage of XPath
is beyond the scope of this book.

Storing XML Data
XML data is text containing nested tags in a strictly governed format. But
XML is still just a string of text. As such, if you needed to save XML
data into a table, you could use any column defined with a text datatype
(preferably a variable-length datatype).

But doing so is not ideal. For starters, if the column allowed text to be
stored, then even non-XML text could end up in the table, and that could
seriously impede subsequent XML processing. In addition, manipulating
and retrieving XML data stored as a string is far from ideal, because SQL
Server cannot differentiate between the XML and the data stored in it.

For these and additional reasons, SQL Server 2005 introduced a new
XML datatype. Here are some of the benefits of using this datatype:

. XML columns only accept well-formed XML; there is no way
anything other than XML could get stored in them.

. Data in XML columns can be validated against an XML schema
(a document that describes the format of a specific XML
specification).

. Data in XML columns can be searched using XQuery searches.

265Storing XML Data

NOTE: XQuery

XQuery is a query language used with XML. You can think of it like
this: SQL is to relational databases what XQuery is to XML data.
XQuery is not covered in this book.

Here is an example of a table with an XML datatype column:

Input ▼

CREATE TABLE MyXMLTable
(

id INT NOT NULL IDENTITY(1,1) PRIMARY KEY,
data XML NOT NULL

);

Analysis ▼

As explained in Lesson 20, “Creating and Manipulating Tables,” CREATE
TABLE is used to create new database tables. This CREATE TABLE statement
creates a simple table with two columns, the second of which is of type
XML.

Once the table is created, rows may be added to the table using INSERT.
But care must be taken to ensure that the XML to be added is syntactical-
ly accurate.

Input ▼

INSERT INTO MyXMLTable(data)
VALUES(
‘<state abbrev=”CA”>
<city name=”Los Angeles” />
<city name=”San Francisco” />

</state>’);

INSERT INTO MyXMLTable(data)
VALUES(
‘<state abbrev=”IL”>
<city name=”Chicago” />

</state>’);

INSERT INTO MyXMLTable(data)
VALUES(
‘<state abbrev=”NY”>
<city name=”New York” />
</state>’);

Analysis ▼

Here, three rows are added to the table, each value as a string of text.
Because the text is syntactically valid XML, the insertions are successful.

In practice, it is generally a good idea to convert a string containing XML
to an actual XML datatype. Here is an example of this:

Input ▼

INSERT INTO MyXMLTable(data)
VALUES(
Cast(‘<state abbrev=”CA”>
<city name=”Los Angeles” />
<city name=”San Francisco” />

</state>’ AS XML));

INSERT INTO MyXMLTable(data)
VALUES(
Cast(‘<state abbrev=”IL”>
<city name=”Chicago” />

</state>’ AS XML));

INSERT INTO MyXMLTable(data)
VALUES(
Cast (‘<state abbrev=”NY”>
<city name=”New York” />
</state>’ AS XML));

Analysis ▼

This example inserts the same data, but firsts converts each string to XML
using the Cast() function.

266 LESSON 27: Working with XML

267Searching for XML Data

NOTE: Using XML Schemas

As already explained, an XML schema is a document that defines
what a specific XML format should look like. XML schemas may be
defined in SQL Server using CREATE XML SCHEMA. Once defined,
schemas may be associated with XML datatype table columns. This
way, whenever XML data is stored, SQL Server will not just ensure
that it is well-formed, but will also validate it against the schema,
ensuring that only valid XML is stored.

Searching for XML Data
Searching for XML data requires the use of XQuery. XML fields can be
accessed using the following XML datatype methods (or functions):

. exist is used to check whether an XQuery expression exists.

. modify is used to modify XML contents.

. nodes is used to break apart XML records into multiple SQL
rows.

. query is used to extract specific elements from XML records.

. value returns the SQL type from an XML record.

XQuery is not covered in this book. However, to give you an idea of what
XQuery-based operations look like, here are a couple examples:

Input ▼

SELECT data.query(‘/state/city’)
FROM MyXMLTable;

Analysis ▼

This example extracts the city names from the previously stored XML
data. /state/city means “find a <state> tag and then find a child tag
within it named <city>.” Obviously, this type of data extraction would be
much more complex if simple string processing had to be used.

Input ▼

SELECT *
FROM MyXMLTable
WHERE data.exist(‘/state/city[@name=”Chicago”]’) = 1;

Analysis ▼

This example locates rows containing a <state> tag with a child <city>
tag named Chicago. Only one of the inserted rows matches this expres-
sion, so only it is returned.

As you can see, once data is stored as XML data (in an XML datatype
column), XPath and XQuery can be used to perform very sophisticated
data manipulation.

268 LESSON 27: Working with XML

TIP: To Learn More

To learn more about XPath, visit http://www.w3.org/TR/xpath. To
learn more about XQuery, visit http://www.w3.org/XML/Query/.

Summary
In this lesson, you learned how to generate XML output based on selected
data. You were also introduced to the XML datatype and saw examples of
how to store and access XML data.

http://www.w3.org/TR/xpath
http://www.w3.org/XML/Query/

LESSON 28

Globalization and
Localization

In this lesson, you’ll learn the basics of how SQL Server handles different
character sets and languages, and how to work with different character
sets in your T-SQL code.

Understanding Character Sets
and Collation Sequences
Database tables are used to store and retrieve data. Different languages
and character sets need to be stored and retrieved differently. As such,
SQL Server needs to accommodate different character sets (different
alphabets and characters) as well as different ways to sort and retrieve
data.

When discussing multiple languages and characters sets, you will run into
the following important terms:

. Character sets: Collections of letters and symbols

. Encodings: The internal representations of the members of a
character set

. Collations: The instructions that dictate how characters are to be
compared

270 LESSON 28: Globalization and Localization

NOTE: Why Collations Are Important

Sorting text in English is easy, right? Well, maybe not. Consider the
words APE, apex, and Apple. Are they in the correct sorted order?
That would depend on whether you wanted a case-sensitive or a
non-case-sensitive sorting. The words would be sorted one way
using a case-sensitive collation, and another way using a non-case-
sensitive collation. And this affects more than just sorting (as in
data sorted using ORDER BY); it also affects searches (whether or
not a WHERE clause looking for apple finds APPLE, for example). The
situation gets even more complex when characters such as the
French à and German ö are used, and even more complex when non-
Latin-based character sets are used (Japanese, Hebrew, Russian,
and so on).

Working with Collation
Sequences
SQL Server comes with hundreds of built-in collations sequences. To see
the full list supported by your server, use the special fn_helpcollations()
function, as shown here:

Input ▼

SELECT * FROM fn_helpcollations();

Analysis ▼

fn_helpcollations() returns a list of all available collations, with the
name and description of each. You can use a WHERE clause to filter the
list to find the exact collation you are looking for.

You will notice that several character sets have more than one collation.
Latin1 General, for example, has many variants, and many appear twice,
once case sensitive (designated by _CS) and once case insensitive (desig-
nated by _CI).

At SQL Server installation time, a default collation sequence is defined.
You can determine the default collation sequence by using the
ServerProperty() function, as shown here:

Input ▼

SELECT ServerProperty(‘Collation’) AS Collation;

Output ▼

Collation

SQL_Latin1_General_CP1_CI_AS

Analysis ▼

This statement displays the current default server collation. (Your own
server may display a collation other than the one shown in this output.)

As you will recall from Lesson 1, “Understanding SQL,” when a database
is created, a default collation sequence is defined for that database. Unless
explicitly specified, this will be the same as the server default.

To determine the collation sequence defined for a specific database, you
can use the server function DatabasePropertyEX():

Input ▼

SELECT DatabasePropertyEX(‘Crash Course’, ‘Collation’)
AS Collation;

Analysis ▼

This statement displays the default collation for the specified database.

To obtain more information about the named collation, you can use the
previously mentioned fn_helpcollations() function, like this:

271Working with Collation Sequences

Input ▼

-- Get collation name
DECLARE @Collation VARCHAR(100);
SELECT @Collation = CONVERT(VARCHAR(100),

ServerProperty(‘Collation’))

-- Get description
SELECT description
FROM fn_helpcollations()
WHERE name = @Collation;

Analysis ▼

This example first obtains the server collation, as shown previously, and
then uses fn_helpcollations() to obtain a collation description.

In practice, character sets can seldom be server-wide (or even database-
wide) settings. Different table columns may require different character
sets, and so these may be specified when a table is created.

To specify a character set and collation for a table, you use CREATE TABLE
(discussed in Lesson 20, “Creating and Manipulating Tables”) with addi-
tional clauses:

Input ▼

CREATE TABLE mytable
(

column1 INT,
column2 VARCHAR(10) COLLATE Hebrew_CI_AI

);

Analysis ▼

This statement creates a two-column table and specifies a specific colla-
tion sequence for one of the columns.

272 LESSON 28: Globalization and Localization

TIP: Changing Collations

You can change collations after table creation by using ALTER
TABLE.

Managing Case Sensitivity
One very important use of collation sequences is to change how case is
handled when searching and sorting. The default collation sequences usu-
ally make searches and sorting case insensitive. If a specific column
always needs case-sensitive searches and sorting, that column can be
defined to use a case-sensitive collation sequence:

Input ▼

CREATE TABLE mytable
(

column1 INT,
column2 VARCHAR(10) COLLATE SQL_Latin1_General_CP1_CS_AS

);

If you need to sort specific SELECT statements using a collation sequence
other than the one used at table-creation time, you may do so in the
SELECT statement itself:

Input ▼

SELECT * FROM customers
ORDER BY cust_name COLLATE SQL_Latin1_General_CP1_CS_AS;

Analysis ▼

This SELECT uses COLLATE to specify an alternate collation sequence (in
this example, a case-sensitive one). This will obviously affect the order in
which results are sorted.

273Managing Case Sensitivity

TIP: Occasional Case Sensitivity

The SELECT statement just shown demonstrates a useful technique
for performing case-sensitive searches on a table that is usually not
case sensitive. And of course, the reverse works just as well.

Alternate collation sequences can also be used in WHERE clauses to change
the case sensitivity of searches. Here is a simple wildcard search:

Input ▼

SELECT cust_id, cust_name
FROM customers
WHERE cust_name LIKE ‘%E%’

Output ▼

cust_id cust_name
----------- --------------
10001 Coyote Inc.
10002 Mouse House
10004 Yosemite Place
10005 E Fudd
10006 Pep E. LaPew
10007 Pep E. LaPew

Analysis ▼

This SELECT retrieves all rows with an E in cust_name, regardless of
whether the E is upper- or lowercase.

Now for a case-sensitive search:

Input ▼

SELECT cust_id, cust_name
FROM customers
WHERE cust_name COLLATE SQL_Latin1_General_CP1_CS_AS LIKE ‘%E%’

Output ▼

cust_id cust_name
----------- --------------
10005 E Fudd
10006 Pep E. LaPew
10007 Pep E. LaPew

Analysis ▼

This SELECT uses COLLATE to specify a case-sensitive collation sequence,
so only rows with an uppercase E in cust_name are retrieved.

274 LESSON 28: Globalization and Localization

275Working with Unicode

NOTE: Other SELECT COLLATE Clauses

In addition to being used in ORDER BY clauses, as shown here,
COLLATE can be used with GROUP BY, HAVING, aggregate functions,
aliases, and more.

Working with Unicode
Unicode is a mechanism by which differing character sets (particularly
non-Latin-based character sets) are referenced and stored. Working with
Unicode text in SQL Server requires the following:

. To successfully store these characters in SQL Server tables, the
columns must be of a type that can store Unicode text.

. Unicode versions of functions should be used, for example,
NChar() instead of Char().

. Any time Unicode text is passed to a T-SQL statement, it must
be designated as such.

SQL Server defines three special datatypes specifically for storing
Unicode text: NCHAR (Unicode equivalent of CHAR), NVARCHAR (Unicode
equivalent of VARCHAR), and NTEXT (Unicode equivalent of TEXT).

TIP: Unicode Datatypes Can Help Plan for the Future

Even if you don’t anticipate needing support for non-Latin-based text
at this time, you may want to define your text columns using the
Unicode types so as to be able to support these languages if need-
ed in the future.

Once a column is defined as supporting Unicode text, you still need to tell
SQL Server that the text being used in Unicode. And you must do this
every time you pass strings to T-SQL.

Consider these examples:

Input ▼

INSERT INTO mytable(column1, column2)
VALUES(1000, ‘ ’);
SELECT * FROM mytable;

Output ▼

column1 column2
----------- ----------
1000 ????

Analysis ▼

This INSERT statement inserts a row with non-Latin text (Hebrew, in this
example) into the previously created mytable. But when retrieved, the text
is displayed as ????. In other words, SQL Server did not recognize it as
Unicode and it was therefore not stored properly.

Here’s the right way to do it:

Input ▼

INSERT INTO mytable(column1, column2)
VALUES(1000, N’ ’);
SELECT * FROM mytable;

Output ▼

column1 column2
----------- ----------
1000

Analysis ▼

This INSERT statement inserts the same text, but prefixes the string with N
to tell SQL Server to treat the text that follows as Unicode. This way, the
data is stored properly, and the subsequent SELECT retrieves the correct
data.

276 LESSON 28: Globalization and Localization

277Summary

CAUTION: Always Remember the N Prefix

The N prefix must be specified whenever Unicode strings are used,
be it text passed to INSERT or UPDATE, or even strings used in a
WHERE clause.

Summary
In this lesson, you learned the basics of character sets and collations. You
also learned how to define the character sets and collations for specific
tables and columns, how to use alternate collations when needed, and how
to handle Unicode text.

This page intentionally left blank

LESSON 29

Managing Security

Database servers usually contain critical data, and ensuring the safety
and integrity of that data requires that access control be used. In this les-
son, you’ll learn about SQL Server access control and user management.

Understanding Access Control
The basis of security for your SQL Server is this: Users should have
appropriate access to the data they need, no more and no less. In other
words, users should not have too much access to too much data.

Consider the following:

. Most users need to read and write data from tables, but few
users will ever need to be able to create and drop tables.

. Some users might need to read tables but might not need to
update them.

. You might want to allow users to add data, but not delete data.

. Some users (managers or administrators) might need rights to
manipulate user accounts, but most should not.

. You might want users to access data via stored procedures, but
never directly.

. You might want to restrict access to some functionality based on
where the user is logging in.

These are just examples, but they help demonstrate an important point.
You need to provide users with the access they need and just the access

they need. This is known as access control, and managing access control
requires creating and managing user accounts.

280 LESSON 29: Managing Security

TIP: Use the Administration Tools

The SQL Server tools (described in Lesson 2, “Introducing SQL
Server”) provide a graphical user interface that can be used to man-
age users and account rights. Internally, these tools actually use the
statements described in this lesson, enabling you to manage access
control interactively and simply.

Back in Lesson 3, “Working with SQL Server,” you learned that you need
to log in to SQL Server in order to perform any operations. When first
installed, SQL Server creates a user account named sa (for System
Administrator), which has complete and total control over the entire SQL
Server. You might have been using the sa login throughout the lessons in
this book, and that is fine when experimenting with SQL Server on non-
live servers. But in the real world you’d never use sa on a day-to-day
basis. Instead, you’d create a series of accounts, some for administration,
some for users, some for developers, and so on.

NOTE: Preventing Innocent Mistakes

It is important to note that access control is not just intended to
keep out users with malicious intent. More often than not, data
nightmares are the result of an inadvertent mistake, a mistyped
T-SQL statement, being in the wrong database, or some other user
error. Access control helps avoid these situations by ensuring that
users are unable to execute statements they should not be
executing.

CAUTION: Don’t Use sa

The sa login should be considered sacred. Use it only when
absolutely needed (perhaps if you cannot get in to other administra-
tive accounts). sa should never be used in day-to-day SQL Server
operations.

Managing Users

281Managing Users

NOTE: Windows or SQL Server?

SQL Server supports two forms of logins and accounts. It can use
its own list of users and accounts, or it can leverage the accounts
managed by the underlying Windows operating system (or Windows
domain, if the server is part of one).

User management, as described in this section, only applies to SQL
Server logins, and not to Windows logins. If you are using Windows
logins, then account creation, deletion, password changes, and
more, should be managed using Windows administrative tools.

However, access control and permissions are always managed within
SQL Server.

SQL Server user accounts and information are stored in the internal SYS
database. You usually do not need to access the SYS database and tables
directly. Instead, SQL Server comes with a series of stored procedures
that manipulate the SYS tables for you.

For example, to obtain a list of logins, you could retrieve data from SYS
tables, or you could use the sp_helplogins stored procedure:

Input ▼

EXEC sp_helplogins;

Analysis ▼

sp_helplogins returns two result sets. The first lists each login and infor-
mation about each. The second lists users associated with logins.

TIP: Listing Specific Logins

sp_helplogins lists all logins. To display a specific login, pass that
login name as a parameter to the stored procedure.

Creating User Accounts
To create a new user login, use the CREATE LOGIN statement, as shown
here:

Input ▼

CREATE LOGIN BenF WITH PASSWORD = ‘P@$$w0rd’;

Analysis ▼

CREATE LOGIN creates a new user login. A password need not be specified
at user account creation time, but this example does specify a password.

If you were to list the user accounts again, you’d see the new account list-
ed in the output.

282 LESSON 29: Managing Security

NOTE: Pre–SQL Server 2005

The CREATE LOGIN statement was introduced in SQL Server 2005.
If you are using an earlier version of SQL Server, you should use the
sp_addlogin stored procedure instead, like this:

EXEC sp_addlogin ‘BenF’, ‘ P@$$w0rd ‘;

Deleting User Accounts
To delete a login (along with any associated rights and privileges), use the
DROP LOGIN statement, as shown here:

Input ▼

DROP LOGIN BenF;

Enabling and Disabling Accounts
To disable an account (without deleting it), use ALTER LOGIN, as shown
here:

Input ▼

ALTER LOGIN BenF DISABLE;

To enable a disabled account, do the following:

Input ▼

ALTER LOGIN BenF ENABLE;

Renaming Logins
To rename a login, use ALTER TABLE, as shown here:

Input ▼

ALTER LOGIN BenF WITH NAME = BenForta;

Changing Passwords
To change user passwords, use ALTER LOGIN, as shown here:

Input ▼

ALTER LOGIN BenF WITH PASSWORD = ‘n3w p@$$w0rd’;

Managing Access Rights
Once a login has been created, you need to specify what databases, tables,
and functionality it has access to. Doing so involves setting and managing
access rights.

283Managing Access Rights

NOTE: Refer to SQL Server Documentation

The full list of rights that can be granted is beyond the scope of this
book. This is true of all versions of SQL Server. And SQL Server
2005 has significantly enhanced the list of possible grants and their
level of granularity. With the basics explained here, refer to SQL
Server documentation for more details and specifics.

Setting Access Rights
To set rights, you use the GRANT statement. At a minimum, GRANT requires
that you specify the following:

. The privilege being granted

. The database or table being granted access to

. The user name

The following example demonstrates the use of GRANT:

Input ▼

GRANT CREATE TABLE TO BenF;

Analysis ▼

This GRANT allows the use of CREATE TABLE. By being granted CREATE
TABLE access only, user BenF can create new tables, but not alter or drop
existing tables.

284 LESSON 29: Managing Security

NOTE: Allowing the Granted to Grant

When using GRANT, you may specify the WITH GRANT OPTION clause
so as to allow the user to grant this same access to others.

Removing Access Rights
The opposite of GRANT is REVOKE, which is used to revoke specific rights
and permissions. Here is an example:

Input ▼

REVOKE CREATE TABLE FROM BenF;

Analysis ▼

This REVOKE statement takes away the CREATE TABLE access just granted
to user BenF.

GRANT and REVOKE can be used to control access at several levels:

. Entire server

. Entire database

. Specific tables

. Specific columns

. Specific stored procedures

Summary
In this lesson, you learned about access control and how to secure your
SQL Server by managing user logins and assigning specific rights to
users.

285Summary

This page intentionally left blank

LESSON 30

Improving Performance

In this lesson, you’ll review some important points pertaining to the per-
formance of SQL Server.

Improving Performance
Database administrators spend a significant portion of their lives tweaking
and experimenting to improve DBMS performance. Poorly performing
databases (and database queries, for that matter) tend to be the most fre-
quent culprits when diagnosing application sluggishness and performance
problems.

What follows is not, by any stretch of the imagination, the last word on
SQL Server performance. This is intended to review key points made in
the previous 29 lessons, as well as to provide a springboard from which to
launch performance optimization discussion and analysis.

So, here goes:

. First and foremost, SQL Server (like all DBMSs) has specific
hardware recommendations. Using any old computer as a database
server is fine when you are learning and playing with SQL Server.
But production servers should adhere to all recommendations.

. As a rule, critical production DBMSs should run on their own
dedicated servers.

. SQL Server is preconfigured with a series of default settings that
are usually a good place to start. But after a while you might
need to tweak memory allocation, buffer sizes, and more.

288 LESSON 30: Improving Performance

TIP: Use SQL Server 2005 Tuning Advisor

SQL Server 2005 comes with a wonderful utility named Database
Engine Tuning Advisor, which can be run from with the Microsoft SQL
Server Management Studio (under the Tools menu). This utility can
analyze your database and tables and make recommendations
about indexes, partitions, and more. This tool is specifically
designed for users who don’t want to learn all of the complexities of
SQL Server internals. It should definitely be taken advantage of.

. SQL Server is a multiuser, multithreaded DBMS; in other words,
it often performs multiple tasks at the same time. And if one of
those tasks is executing slowly, all requests will suffer. You can
use Windows System Monitor to monitor SQL Server disk and
memory usage, be alerted of critical events, and more.

. There is almost always more than one way to write a SELECT
statement. Experiment with joins, unions, subqueries, and more
to find what is optimum for you and your data.

. When SQL Server processes T-SQL statements, it attempts to
optimize them, breaking requests into smaller requests as appro-
priate, using indexes, and so on. Understanding what SQL
Server has done, and being able to determine the amount of time
spent processing specific parts of a batch or stored procedure, is
vital in optimizing performance. SQL Server can report the exe-
cution plan used by submitted SQL statements. This option is
available in Microsoft SQL Server Management Studio (if
you’re using SQL Server 2005) and Enterprise Manager (if
you’re using an earlier version of SQL Server).

. As a general rule, stored procedures execute quicker than indi-
vidual T-SQL statements.

. Use the right datatypes…always.

. Never retrieve more data than you need. In other words, don’t
use SELECT * (unless you truly do need each and every column).

. Database tables must be indexed to improve the performance of
data retrieval. Determining what to index is not a trivial task, and
involves analyzing used SELECT statements to find recurring
WHERE and ORDER BY clauses. If a simple WHERE clause is taking
too long to return results, you can bet that the column (or
columns) being used is a good candidate for indexing.

. Have a series of complex OR conditions in your SELECT? You
may see a significant performance improvement by using multi-
ple SELECT statements and UNION to connect then.

. Indexes improve the performance of data retrieval, but hurt the
performance of data insertion, deletion, and updating. If you
have tables that collect data and are not often searched, don’t
index them until needed. (Indexes can be added and dropped as
needed).

. LIKE is slow. As a general rule, you are better off using full-text
searching with FREETEXT or CONTAINS.

. Databases are living entities. A well-optimized set of tables
might not be so after a while. As table usage and contents
change, so might the ideal optimization and configuration.

. And the most important rule is simply this: Every rule is meant
to be broken at some point.

289Summary

TIP: Browse the Docs

The SQL Server documentation installed with SQL Server is chock
full of useful tips and tricks, and is completely searchable (and
searches can also automatically include online resources). Be sure
to check out this invaluable resource.

Summary
In this lesson, you reviewed some important tips and notes pertaining to
SQL Server performance. Of course, this is just the tip of the iceberg, but
now that you have completed this book, you are free to experiment and
learn as you best see fit.

This page intentionally left blank

APPENDIX A

Getting Started with
SQL Server and T-SQL

If you are new to SQL Server and T-SQL, here is what you need to know
to get started.

What You’ll Need
To start using T-SQL and to follow along with the lessons in this book,
you need access to a SQL Server and copies of client applications (soft-
ware used to access the server).

You do not need your own installed copy of SQL Server, but you do need
access to a server. You basically have two options:

. Obtain access to an existing SQL Server installation, perhaps
one by your hosting company or place of business or school. To
use this server you will be granted a server account (a login
name and password).

. Download and install a free copy of SQL Server Express for
installation on your own computer (SQL Server runs on
Windows machines only).

TIP: If You Can, Install a Local Server

For complete control, including access to commands and features
that you will probably not be granted if using someone else’s SQL
Server, install your own local server. Even if you don’t end up using
your local server as your final production DBMS, you’ll still benefit
from having complete and unfettered access to all the server has to
offer.

Regardless of whether you use a local server, you need client software
(the program you use to actually run T-SQL commands). Your best option
is to use the client programs that come with SQL Server:

. If you are using SQL Server 2005, the tool you want to use is
SQL Server Management Studio.

. If you are using an earlier version of SQL Server, the tool you
want to use is SQL Enterprise Manager (which includes a tool
called Query Analyzer, where you actually execute T-SQL
queries).

Obtaining the Software
To learn more about SQL Server, go to http://www.microsoft.com/sql/.
This page contains links to trial software and other downloads. The trial
software version of SQL Server 2005 is the full product, but it will only
run for 180 days. SQL Server 2005 Express lacks some advanced func-
tionality, but it’s completely free to download and use.

292 APPENDIX A: Getting Started with SQL Server and T-SQL

NOTE: SQL Server Express

Although SQL Server Express does lack some of the more advanced
features found in the commercial versions of SQL Server, this will
not impact your studying with this book. All of the lessons in this
book will work with the free SQL Server Express.

Installing the Software
Installing SQL Server is straightforward; the installation wizard will walk
you through the process, which includes the following options:

. Setting an installation location. (The default is usually fine.)

. Choosing a password for the sa user.

http://www.microsoft.com/sql/

. Installing the documentation. (You are strongly encouraged to
do so.)

. Selecting from lots of other options. (You can generally use the
default values.)

Preparing for Your Lessons
After you have installed SQL Server, Lesson 3, “Working with SQL
Server,” shows you how to log in and log out of the server, and how to
execute commands.

The lessons in this book all use real T-SQL statements and real data.
Appendix B, “The Example Tables,” describes the example tables used in
this book, and explains how to obtain and use the table-creation and popu-
lation scripts.

293Preparing for Your Lessons

This page intentionally left blank

APPENDIX B

The Example Tables

Writing SQL statements requires a good understanding of the underlying
database design. Without knowing what information is stored in what
table, how tables are related to each other, and the actual breakup of data
within a row, it is impossible to write effective SQL.

You are strongly advised to actually try every example in every lesson in
this book. All the lessons use a common set of data files. To assist you in
better understanding the examples and to enable you to follow along with
the lessons, this appendix describes the tables used, their relationships,
and how to obtain them.

Understanding the Example
Tables
The tables used throughout this book are part of an order-entry system
used by an imaginary distributor of paraphernalia that might be needed by
your favorite cartoon characters (yes, cartoon characters; no one said that
learning T-SQL needed to be boring). The tables are used to perform sev-
eral tasks:

. Manage vendors

. Manage product catalogs

. Manage customer lists

. Enter customer orders

Making this all work requires six tables that are closely interconnected as
part of a relational database design. A description of each of the tables
appears in the following sections.

296 APPENDIX B: The Example Tables

NOTE: Simplified Examples

The tables used here are by no means complete. A real-world order-
entry system would have to keep track of lots of other data that has
not been included here (for example, payment and accounting infor-
mation, shipment tracking, and more). However, these tables do
demonstrate the kinds of data organization and relationships you
will encounter in most real installations. You can apply these tech-
niques and technologies to your own databases.

Table Descriptions
What follows is a description of each of the six tables, along with the
name of the columns within each table and their descriptions.

NOTE: Why Out of Order?

If you are wondering why the six tables are listed in the order they
are, it is due to their dependencies. Because the products tables is
dependent on the vendors table, vendors is listed first, and so on.

The vendors Table
The vendors table stores the vendors whose products are sold. Every ven-
dor has a record in this table, and that vendor ID (the vend_id) column is
used to match products with vendors.

TABLE B.1 vendors Table Columns

Column Description

vend_id Unique numeric vendor ID

vend_name Vendor name

vend_address Vendor address

vend_city Vendor city

vend_state Vendor state

vend_zip Vendor ZIP Code

vend_country Vendor country

. All tables should have primary keys defined. This table should
use vend_id as its primary key. vend_id is an identity field.

The products Table
The products table contains the product catalog, one product per row.
Each product has a unique ID (the prod_id column) and is related to its
vendor by vend_id (the vendor’s unique ID).

TABLE B.2 products Table Columns

Column Description

prod_id Unique product ID

vend_id Product vendor ID (relates to vend_id in vendors
table)

prod_name Product name

prod_price Product price

prod_desc Product description

. All tables should have primary keys defined. This table should
use prod_id as its primary key.

. To enforce referential integrity, a foreign key should be defined
on vend_id, relating it to vend_id in vendors.

The customers Table
The customers table stores all customer information. Each customer has a
unique ID (the cust_id column).

TABLE B.3 customers Table Columns

Column Description

cust_id Unique numeric customer ID

cust_name Customer name

cust_address Customer address

cust_city Customer city

cust_state Customer state

297Understanding the Example Tables

continues

cust_zip Customer ZIP Code

cust_country Customer country

cust_contact Customer contact name

cust_email Customer contact email address

. All tables should have primary keys defined. This table should
use cust_id as its primary key. cust_id is an identity field.

The orders Table
The orders table stores customer orders (but not order details). Each
order is uniquely numbered (the order_num column). Orders are associat-
ed with the appropriate customers by the cust_id column (which relates
to the customer’s unique ID in the customers table).

TABLE B.4 orders Table Columns

Column Description

order_num Unique order number

order_date Order date

cust_id Order customer ID (relates to cust_id in
customers table)

. All tables should have primary keys defined. This table should
use order_num as its primary key. order_num is an identity field.

. To enforce referential integrity, a foreign key should be defined
on cust_id, relating it to cust_id in customers.

The orderitems Table
The orderitems table stores the actual items in each order, one row per
item per order. For every row in orders there are one or more rows in
orderitems. Each order item is uniquely identified by the order number
plus the order item (first item in order, second item in order, and so on).
Order items are associated with their appropriate order by the order_num

298 APPENDIX B: The Example Tables

TABLE B.3 Continued

Column Description

column (which relates to the order’s unique ID in orders). In addition,
each order item contains the product ID of the item orders (which relates
the item back to the products table).

TABLE B.5 orderitems Table Columns

Column Description

order_num Order number (relates to order_num in orders table)

order_item Order item number (sequential within an order)

prod_id Product ID (relates to prod_id in products table)

quantity Item quantity

item_price Item price

. All tables should have primary keys defined. This table should
use order_num and order_item as its primary keys.

. To enforce referential integrity, foreign keys should be defined
on order_num, relating it to order_num in orders, and prod_id,
relating it to prod_id in products.

The productnotes Table
The productnotes table stores notes associated with specific products.
Not all products may have associated notes, and some products may have
many associated notes.

TABLE B.6 productnotes Table Columns

Column Description

note_id Unique note ID

prod_id Product ID (corresponds to prod_id in products table)

note_date Date note was added

note_text Note text

. All tables should have primary keys defined. This table should
use note_id as its primary key.

. To enforce referential integrity, a foreign key should be defined
on prod_id, relating it to prod_id in products.

299Understanding the Example Tables

Creating the Example Tables
In order to follow along with the examples, you need a set of populated
tables. Everything you need to get up and running can be found on this
book’s web page at

http://www.forta.com/books/0672328674/

The web page contains two SQL script files that you may download:

. create.sql contains the T-SQL statements to create the six
database tables (including defining all primary keys and foreign
key constraints).

. populate.sql contains the SQL INSERT statements used to pop-
ulate these tables.

300 APPENDIX B: The Example Tables

NOTE: For SQL Server Only

The SQL statements in the downloadable .sql files are very DBMS
specific and are designed to be used only with Microsoft SQL
Server.

The scripts have been tested extensively with SQL Server 2000 and
SQL Server 2005 and have not been tested with earlier versions of
SQL Server.

After you have downloaded the scripts, you can use them to create and
populate the tables needed to follow along with the lessons in this book.
Here are the steps to follow:

1. Create a new database named crashcourse (or pick any name of
your choice, but do not use any existing database name, just to
be on the safe side). If you’re using SQL Server 2005, the sim-
plest way to do this is to use the Microsoft SQL Server
Management Studio (described in Lesson 2, “Introducing SQL
Server”). If you’re using SQL Server 2000, use SQL Enterprise
Manager.

2. Make sure the new database is selected (use the USE command,
or select the database from the drop-down list). If you’re using
the Microsoft SQL Server Management Studio, you can do this

http://www.forta.com/books/0672328674/

right inside of the same tool. If you’re using SQL Server 2000,
use SQL Query Analyzer.

3. Execute the create.sql script. You may simply copy and paste
the entire contents of the file into the query window, or you can
use the File menu options to open create.sql directly. (If
you’re using SQL Server 2005, you should be able to just dou-
ble-click files with an .sql extension to open them in Microsoft
SQL Server Management Studio).

4. Repeat the previous step using the populate.sql file to populate
the new tables.

And with that you should be good to go!

301Creating the Example Tables

NOTE: Create, Then Populate

You must run the table-creation scripts before the table-population
scripts. Be sure to check for any error messages returned by these
scripts. If the creation scripts fail, you will need to remedy whatever
problem might exist before continuing with table population.

This page intentionally left blank

APPENDIX C

T-SQL Statement
Syntax

To help you find the syntax you need when you need it, this appendix lists
the syntax for the most frequently used T-SQL operations. Each statement
starts with a brief description and then displays the appropriate syntax.
For added convenience, you’ll also find cross-references to the lessons
where specific statements are taught.

When reading statement syntax, remember the following:

. The | symbol is used to indicate one of several options, so
NULL|NOT NULL means specify either NULL or NOT NULL.

. Keywords or clauses contained within square parentheses [like
this] are optional.

. Not all T-SQL statements are listed, nor is every clause and
option listed.

BEGIN TRANSACTION
BEGIN TRANSACTION is used to start a new transaction block. See Lesson
26, “Managing Transaction Processing,” for more information.

Input ▼

BEGIN TRANSACTION;

ALTER TABLE
ALTER TABLE is used to update the schema of an existing table. To create a
new table, use CREATE TABLE. See Lesson 20, “Creating and Manipulating
Tables,” for more information.

Input ▼

ALTER TABLE tablename
(

ADD column datatype [NULL|NOT NULL]
[CONSTRAINTS],

ALTER column columns datatype [NULL|NOT NULL]
[CONSTRAINTS],

DROP column,
...

);

COMMIT TRANSACTION
COMMIT TRANSACTION is used to write a transaction to the database. See
Lesson 26 for more information.

Input ▼

COMMIT TRANSACTION;

CREATE INDEX
CREATE INDEX is used to create an index on one or more columns. See
Lesson 20 for more information.

Input ▼

CREATE INDEX indexname
ON tablename (column [ASC|DESC], ...);

304 APPENDIX C: T-SQL Statement Syntax

CREATE LOGIN
CREATE LOGIN is used to add a new user account to the system. See
Lesson 29, “Managing Security,” for more information.

Input ▼

CREATE LOGIN loginname;

CREATE PROCEDURE
CREATE PROCEDURE is used to create .a stored procedure. See Lesson 23,
“Working with Stored Procedures,” for more information.

Input ▼

CREATE PROCEDURE procedurename
[parameters]
AS
BEGIN
...
END;

CREATE TABLE
CREATE TABLE is used to create new database tables. To update the schema
of an existing table, use ALTER TABLE. See Lesson 20 for more information.

Input ▼

CREATE TABLE tablename
(

column datatype [NULL|NOT NULL] [CONSTRAINTS],
column datatype [NULL|NOT NULL] [CONSTRAINTS],
...

);

305CREATE TABLE

CREATE VIEW
CREATE VIEW is used to create a new view of one or more tables. See
Lesson 21, “Using Views,” for more information.

Input ▼

CREATE VIEW viewname
AS
SELECT ...;

DELETE
DELETE deletes one or more rows from a table. See Lesson 19, “Updating
and Deleting Data,” for more information.

Input ▼

DELETE FROM tablename
[WHERE ...];

DROP
DROP permanently removes database objects (tables, views, indexes, and
so forth). See Lessons 20, 21, and 23, as well as Lesson 24, “Using
Cursors,” and Lesson 25, “Using Triggers,” for more information.

Input ▼

DROP DATABASE|INDEX|LOGIN|PROCEDURE|TABLE|TRIGGER|VIEW
itemname;

INSERT
INSERT adds a single row to a table. See Lesson 18, “Inserting Data,” for
more information.

306 APPENDIX C: T-SQL Statement Syntax

Input ▼

INSERT INTO tablename [(columns, ...)]
VALUES(values, ...);

INSERT SELECT
INSERT SELECT inserts the results of a SELECT into a table. See Lesson 18
for more information.

Input ▼

INSERT INTO tablename [(columns, ...)]
SELECT columns, ... FROM tablename, ...
[WHERE ...];

ROLLBACK TRANSACTION
ROLLBACK TRANSACTION is used to undo a transaction block. See Lesson
26 for more information.

Input ▼

ROLLBACK [savepointname];

SAVE TRANSACTION
SAVE TRANSACTION defines a savepoint for use with a ROLLBACK statement.
See Lesson 26 for more information.

Input ▼

SAVE TRANSACTION sp1;

307SAVE TRANSACTION

SELECT
SELECT is used to retrieve data from one or more tables (or views). See
Lesson 4, “Retrieving Data,” Lesson 5, “Sorting Retrieved Data,” and
Lesson 6, “Filtering Data,” for more basic information. (Lessons 4–17 all
cover aspects of SELECT.)

Input ▼

SELECT columnname, ...
FROM tablename, ...
[WHERE ...]
[UNION ...]
[GROUP BY ...]
[HAVING ...]
[ORDER BY ...];

UPDATE
UPDATE updates one or more rows in a table. See Lesson 19 for more
information.

Input ▼

UPDATE tablename
SET columnname = value, ...
[WHERE ...];

308 APPENDIX C: T-SQL Statement Syntax

APPENDIX D

T-SQL Datatypes

As explained in Lesson 1, “Understanding SQL,” datatypes are basically
rules that define what data may be stored in a column and how that data is
actually stored.

Datatypes are used for several reasons:

. Datatypes enable you to restrict the type of data that can be
stored in a column. For example, a numeric datatype column
only accepts numeric values.

. Datatypes allow for more efficient storage, internally. Numbers
and date/time values can be stored in a more condensed format
than text strings.

. Datatypes allow for alternate sorting orders. If everything is
treated as strings, 1 comes before 10, which comes before 2.
(Strings are sorted in dictionary sequence, one character at a
time starting from the left.) As numeric datatypes, the numbers
would be sorted correctly.

When designing tables, pay careful attention to the datatypes being used.
Using the wrong datatype can seriously impact your application.
Changing the datatypes of existing populated columns is not a trivial task.
(In addition, doing so can result in data loss.)

Although this appendix is by no means a complete tutorial on datatypes
and how they are to be used, it explains the major T-SQL datatype types
and what they are used for.

String Datatypes
The most commonly used datatypes are string datatypes. These datatypes
store strings (for example, names, addresses, phone numbers, and ZIP
Codes). As shown in Table D.1, there are basically two types of string
datatypes you can use: fixed-length strings and variable-length strings.

Fixed-length strings are datatypes defined to accept a fixed number of
characters, and that number is specified when the table is created. For
example, you might allow 30 characters in a “first name” column or 11
characters in a “social security number” column (the exact number needed
allowing for the two dashes). Fixed-length columns do not allow more
than the specified number of characters. They also allocate storage space
for as many characters as specified. So, if the string Ben is stored in a 30-
character “first name” field, a full 30 bytes are stored. CHAR is an example
of a fixed-length string type.

Variable-length strings store text of variable lengths. TEXT is an example
of a variable-length string type.

If variable-length datatypes are so flexible, why would you ever want to
use fixed-length datatypes? The answer is performance. SQL Server can
sort and manipulate fixed-length columns far more quickly than it can sort
variable-length columns. In addition, SQL Server does not allow you to
index variable-length columns (or the variable portion of a column). This
also dramatically affects performance.

TABLE D.1 String Datatypes

Datatype Description

CHAR Fixed-length string from 1 to 8,000 characters long.
Its size must be specified at create time; otherwise,
SQL Server assumes CHAR(1).

NCHAR Fixed-length Unicode string from 1 to 4,000 chars
long. Its size must be specified at create time; other-
wise, SQL Server assumes NCHAR(1).

NTEXT Variable-length Unicode text with a maximum size of
1,073,741,823 characters.

NVARCHAR Variable-length Unicode text with a maximum size of
4,000 characters.

310 APPENDIX D: T-SQL Datatypes

TEXT Variable-length text with a maximum size of
2,147,483,647 characters.

VARCHAR Variable-length text with a maximum size of 8,000
characters.

311Numeric Datatypes

TABLE D.1 Continued

Datatype Description

TIP: Using Quotes

Regardless of the form of string datatype being used, string values
must always be surrounded by quotes (single quotes are often
preferred).

CAUTION: When Numeric Values Are Not Numeric Values

You might think that phone numbers and U.S. ZIP Codes should be
stored in numeric fields (after all, they only store numeric data), but
doing so would not be advisable. If you store the ZIP Code 01234 in
a numeric field, the number 1234 would be saved. You’d actually
lose a digit.

The basic rule to follow is, if the number is used in calculations
(sums, averages, and so on), it belongs in a numeric datatype col-
umn. If it is used as a literal string (that happens to contain only dig-
its), it belongs in a string datatype column.

Numeric Datatypes
Numeric datatypes store numbers. SQL Server supports several numeric
datatypes, each with a different range of numbers that can be stored in it.
Obviously, the larger the supported range, the more storage space needed.
In addition, some numeric datatypes support the use of decimal points
(and fractional numbers), whereas others support only whole numbers.
Table D.2 lists the frequently used SQL Server numeric datatypes.

TABLE D.2 Numeric Datatypes

Datatype Description

BIT A bit field, with a possible value of
0 or 1.

BIGINT Integer value. Supports numbers from
-9,223,372,036,854,775,808 to
-9,223,372,036,854,775,807.

DECIMAL (or DEC or NUMERIC) Floating-point value with varying levels
of precision.

FLOAT Variable-length byte floating-point value.

INT (or INTEGER) Integer value. Supports numbers from
-2,147,483,648 to 2,147,483,647.

MONEY Currency with four decimal places.
Supports numbers from
-922,337,203,685,477.5808 to
922,337,203,685,477.5807.

REAL Four-byte floating-point value.

SMALLINT Integer value. Supports numbers from
-32,768 to 32,767.

SMALLMONEY Currency with four decimal places.
Supports numbers from -214,748.3648
to 214,748.3647.

TINYINT Integer value. Supports numbers from 0
to 255.

312 APPENDIX D: T-SQL Datatypes

TIP: Not Using Quotes

Unlike strings, numeric values should never be enclosed within
quotes.

Date and Time Datatypes
SQL Server uses special datatypes for the storage of date and time values,
as listed in Table D.3.

TABLE D.3 Date and Time Datatypes

Datatype Description

DATETIME Stores dates from January 1, 1753 through
December 31, 9999.

SMALLDATETIME Stores dates from January 1, 1900 through
June 6, 2079.

Binary Datatypes
Binary datatypes are used to store all sorts of data (even binary informa-
tion), such as graphic images, multimedia, and word processing docu-
ments (see Table D.4).

TABLE D.4 Binary Datatypes

Datatype Description

BINARY Fixed-length binary data of up to 8,000
characters.

VARBINARY Variable-length binary data of up to 8,000
characters.

VARBINARY(max) Variable-length binary data exceeding 8,000
characters.

Other Datatypes
In addition to the datatypes listed thus far, SQL Server supports several
special-purpose datatypes (see Table D.5).

TABLE D.5 Other Datatypes

Datatype Description

CURSOR Contains a reference to a cursor

TABLE A temporary table

UNIQUEIDENTIFIER A unique identifier in 16-byte GUID format

XML Well-formed XML data

313Other Datatypes

314 APPENDIX D: T-SQL Datatypes

NOTE: Datatypes in Use

If you would like to see a real-world example of how different data-
bases are used, see the sample table-creation scripts described in
Appendix B, “The Example Tables.”

APPENDIX E

T-SQL Reserved Words

The T-SQL implementation of SQL is made up of keywords; special
words that are used in performing SQL operations. Special care must be
taken not to use these keywords when you are naming databases, tables,
columns, and any other database objects. Thus, these keywords are con-
sidered reserved. This appendix lists all of the T-SQL reserved words (as
of SQL Server 2005), including ODBC reserved keywords as well as
words that Microsoft has reserved for future use.

ABSOLUTE

ACTION

ADA

ADD

ADMIN

AFTER

AGGREGATE

ALIAS

ALL

ALLOCATE

ALTER

AND

ANY

ARE

ARRAY

AS

ASC

ASSERTION

AT

AUTHORIZATION

AVG

BACKUP

BEFORE

BEGIN

BETWEEN

BINARY

BIT

BIT_LENGTH

BLOB

BOOLEAN

BOTH

BREADTH

BREAK

BROWSE

BULK

BY

CALL

CASCADE

CASCADED

CASE

CAST

CATALOG

CHAR

CHAR_LENGTH

CHARACTER

CHARACTER_LENGTH

CHECK

CHECKPOINT

CLASS

CLOB

CLOSE

CLUSTERED

COALESCE

COLLATE

COLLATION

COLUMN

COMMIT

COMPLETION

COMPUTE

CONNECT

CONNECTION

CONSTRAINT

CONSTRAINTS

CONSTRUCTOR

CONTAINS

CONTAINSTABLE

CONTINUE

CONVERT

CORRESPONDING

COUNT

CREATE

CROSS

CUBE

CURRENT

CURRENT_DATE

CURRENT_PATH

CURRENT_ROLE

CURRENT_TIME

CURRENT_TIMESTAMP

CURRENT_USER

CURSOR

CYCLE

DATA

DATABASE

DATE

DAY

DBCC

DEALLOCATE

DEC

DECIMAL

DECLARE

DEFAULT

DEFERRABLE

DEFERRED

DELETE

DENY

DEPTH

DEREF

DESC

DESCRIBE

DESCRIPTOR

DESTROY

DESTRUCTOR

DETERMINISTIC

DIAGNOSTICS

DICTIONARY

DISCONNECT

DISK

DISTINCT

DISTRIBUTED

DOMAIN

DOUBLE

DROP

DUMMY

DUMP

DYNAMIC

EACH

ELSE

END

END-EXEC

EQUALS

ERRLVL

ESCAPE

EVERY

EXCEPT

EXCEPTION

EXEC

EXECUTE

EXISTS

EXIT

EXTERNAL

EXTRACT

FALSE

FETCH

FILE

FILLFACTOR

FIRST

FLOAT

316 APPENDIX E: T-SQL Reserved Words

FOR

FOREIGN

FORTRAN

FOUND

FREE

FREETEXT

FREETEXTTABLE

FROM

FULL

FULLTEXTTABLE

FUNCTION

GENERAL

GET

GLOBAL

GO

GOTO

GRANT

GROUP

GROUPING

HAVING

HOLDLOCK

HOST

HOUR

IDENTITY

IDENTITY_INSERT

IDENTITYCOL

IF

IGNORE

IMMEDIATE

IN

INCLUDE

INDEX

INDICATOR

INITIALIZE

INITIALLY

INNER

INOUT

INPUT

INSENSITIVE

INSERT

INT

INTEGER

INTERSECT

INTERVAL

INTO

IS

ISOLATION

ITERATE

JOIN

KEY

KILL

LANGUAGE

LARGE

LAST

LATERAL

LEADING

LEFT

LESS

LEVEL

LIKE

LIMIT

LINENO

LOAD

LOCAL

LOCALTIME

LOCALTIMESTAMP

LOCATOR

LOWER

MAP

MATCH

MAX

MIN

MINUTE

MODIFIES

MODIFY

MODULE

MONTH

NAMES

NATIONAL

NATURAL

NCHAR

NCLOB

NEW

NEXT

NO

NOCHECK

NONCLUSTERED

317T-SQL Reserved Words

NONE

NOT

NULL

NULLIF

NUMERIC

OBJECT

OCTET_LENGTH

OF

OFF

OFFSETS

OLD

ON

ONLY

OPEN

OPENDATASOURCE

OPENQUERY

OPENROWSET

OPENXML

OPERATION

OPTION

OR

ORDER

ORDINALITY

OUT

OUTER

OUTPUT

OVER

OVERLAPS

PAD

PARAMETER

PARAMETERS

PARTIAL

PASCAL

PATH

PERCENT

PLAN

POSITION

POSTFIX

PRECISION

PREFIX

PREORDER

PREPARE

PRESERVE

PRIMARY

PRINT

PRIOR

PRIVILEGES

PROC

PROCEDURE

PUBLIC

RAISERROR

READ

READS

READTEXT

REAL

RECONFIGURE

RECURSIVE

REF

REFERENCES

REFERENCING

RELATIVE

REPLICATION

RESTORE

RESTRICT

RESULT

RETURN

RETURNS

REVOKE

RIGHT

ROLE

ROLLBACK

ROLLUP

ROUTINE

ROW

ROWCOUNT

ROWGUIDCOL

ROWS

RULE

SAVE

SAVEPOINT

SCHEMA

SCOPE

SCROLL

SEARCH

SECOND

SECTION

SELECT

318 APPENDIX E: T-SQL Reserved Words

SEQUENCE

SESSION

SESSION_USER

SET

SETS

SETUSER

SHUTDOWN

SIZE

SMALLINT

SOME

SPACE

SPECIFIC

SPECIFICTYPE

SQL

SQLCA

SQLCODE

SQLERROR

SQLEXCEPTION

SQLSTATE

SQLWARNING

START

STATE

STATEMENT

STATIC

STATISTICS

STRUCTURE

SUBSTRING

SUM

SYSTEM_USER

TABLE

TEMPORARY

TERMINATE

TEXTSIZE

THAN

THEN

TIME

TIMESTAMP

TIMEZONE_HOUR

TIMEZONE_MINUTE

TO

TOP

TRAILING

TRAN

TRANSACTION

TRANSLATE

TRANSLATION

TREAT

TRIGGER

TRIM

TRUE

TRUNCATE

TSEQUAL

UNDER

UNION

UNIQUE

UNKNOWN

UNNEST

UPDATE

UPDATETEXT

UPPER

USAGE

USE

USER

USING

VALUE

VALUES

VARCHAR

VARIABLE

VARYING

VIEW

WAITFOR

WHEN

WHENEVER

WHERE

WHILE

WITH

WITHOUT

WORK

WRITE

WRITETEXT

YEAR

ZONE

319T-SQL Reserved Words

This page intentionally left blank

SYMBOLS
[] (square brackets) wildcard,

65-66
^ (caret) character, 66
_ (underscore) wildcard, 64-65
| (pipe) symbol, 303
> (greater than operator), 47
< (less than operator), 47

>! (not greater than operator), 47
<! (not less than operator), 47
% (modulo operator), 76
% (percent sign) wildcard, 62-64
() (parentheses), WHERE clauses,

57
* (asterisk), 31
* (multiplication operator), 76
+ (addition operator), 76
- (subtraction operator), 76
= (equality operator), 47
>= (greater than or equal to opera-

tor), 47
<= (less than or equal to operator),

47

A
Abs() function, 89
access

control, 279-280
rights, 283-285

accounts, managing users, 281-283
adding rows to tables, 306
addition (+) operator, 76
aggregate functions

applying, 99
Avg(), 92-93
combining, 100
Count(), 94
data grouping, 101-102

creating groups, 102-103
filtering groups, 103-106
ordering SELECT state-

ments, 108-109
sorting groups, 106-108

joins, 145-146
Max(), 95
MIN(), 96-97

Index

overview, 91-92
Sum(), 97-98

aliases
alternative uses, 74
concatenating fields, 73-74
creating, 137-138
naming, 100
table names, 138

ALL argument, 98
alphabetical sort order, 40-42
ALTER FULLTEXT, 161
ALTER LOGIN statement, 282
ALTER TABLE statement,

195-197, 283
AND keyword, 50, 54
AND operator, 53-57
appending conditions, 53-54
applications

queries, 46
SQL Server clients, 14-18

applying
aggregate functions, 99
AND operator, 53-54
cursors, 235-236
full-text searching, 162-170
joins, 125-126
looping, 221-222
OR operator, 54-55
quotes, 166
stored procedures, 225-234
triggers, 247-249
variables, 210, 214-216

assigning values to,
211-212

declaring, 210
viewing, 212-214

views, 200-208
wildcards, 67

arguments
All, 98
DISTINCT, 98

AS keyword, 73-74
ASC keyword, query results sort

order, 42
ascending sort order, specifying,

40-42
assigning

triggers, 246
values to variables, 211-212

asterisk (*), 31
autocommit, 255-257
Avg() function, 92-93

B
batch processing, 215
BEGIN END block, 249
BEGIN TRANSACTION state-

ment, 303
best practices, primary keys, 10
BETWEEN operator, 47, 50
BIGINT datatype, 312
BINARY datatype, 313
binary datatypes, 313
BIT datatype, 312
blocks, BEGIN END, 249

322 aggregate functions

C
calculated fields

concatenating fields, 70-74
mathematical calculations,

75-77
overview, 69-70
subqueries, 116-118
views, 205-207

calculated values, totaling, 97
calculating

data grouping, 101-102
creating groups, 102-103
filtering groups, 103-106
ordering SELECT state-

ments, 108-109
sorting groups, 106-108

multiple columns, 98
Cartesian Product, 128
case sensitivity

managing, 273-275
percent sign (%) wildcard, 63
query result sort order, 42
statements, 29

catalogs
creating full-text, 159-160
managing, 161-162

CHAR datatype, 310
characters, 269-270

number of occurrences, 62-64
percent sign (%) wildcard, 63
searching for, 65-66
underscore (_) wildcard,

64-65
Unicode, 275-277

CharIndex() function, 81
clauses, 38

FOR XML, 260
FROM, 127
GROUP BY, 102-103
HAVING, 104
ORDER BY, 262

combining queries,
154-155

positioning, 43
sorting queries, 37-39

positioning, 46
WHERE, 45-47

combining, 53-57
filtering groups, 103-106
IN operator, 57-59
joins, 128-131
multiple, 152
nonmatches, 49
NOT operator, 59-60
NULL values, 51
operators, 46-47
queries, 149
quotes and, 49
range of values, 50
Soundex() function, 82
subqueries, 114
values, 47-48
wildcards, 62

client-based results formatting, 70
clients, SQL Server, 14-18
CLOSE statement cursors, 237-238
code, comments, 216
collations, 269-275

How can we make this index more useful? Email us at indexes@samspublishing.com

323collations

columns
aliases

alternative uses, 74
concatenating fields,

73-74
creating, 137-138

derived, 74
descending order, 42
fully qualified names, 127
GROUP BY clause, 103
individual, 93
INSERT SELECT statements,

178
INSERT statements, 174-175
multiple

calculating, 98
sorting, 39-40

NULL value, 189-190
overview of, 8
padded spaces, 72
primary keys, 9-11
queries, 39-40
retrieving, 27-31
separating names in queries,

29
subqueries, 115
updating multiple, 182
values, 183

combining
aggregate functions, 100
operators, 55-57
queries, 113, 149-153

creating, 152
modifying rows, 153-154
sorting, 154-155

WHERE clauses, 53-57

commands
DROP, 227-228
ROLLBACK, 254

comments, code, 216
COMMIT statement (transaction

processing), 255
COMMIT TRANSACTION state-

ment, 304
commits (transaction processing),

defined, 253
concatenating fields, 70-71

column aliases, 73-74
mathematical calculations,

75-77
conditional processing, 217-219
conditions

appending, 53-54
joins, 147
matching, 54-55

configuring
access rights, 284-285
cursors, 236-242
full-text searching, 158-162
tables, 187-193
triggers, 244-245

applying, 247-249
assigning, 246
dropping, 245
enabling/disabling, 246

user accounts, 282-283
connections, DBMSs, 16, 19-20
CONTAINS, searching using,

164-168
correlated subqueries, 117
Cos() function, 89
Count() function, 94, 145

324 columns

CREATE FULLTEXT CATALOG,
159

CREATE FULLTEXT INDEX,
160

CREATE INDEX statement, 304
CREATE LOGIN statement, 282,

305
CREATE PROCEDURE statement

stored procedures, 226-227
syntax, 305

CREATE TABLE statement,
187-193, 304

DEFAULT keyword, 193-194
syntax, 305

CREATE TRIGGER statement,
244-245

CREATE VIEW statement, 201,
306

creating
indexes, 304
stored procedures, 305
tables, 305

cross joins, 131. See also joins
CURSOR datatype, 313
cursors

accessing, 239
closing, 238
creating, 236-237
fetching, 238-242
implementing, 235-236
opening and closing, 237-238
overview, 235

customers table, 297-298

D
data

breaking correctly (columns),
8

deleting, 185
grouping, 101-102

creating, 102-103
filtering, 103-106
ordering SELECT state-

ments, 108-109
sorting, 106-108
and time datatypes, 312
updating, 185

Database Management System. See
DBMS

databases
dropping objects, 306
information, 21-25
overview of, 5-6
owners, 36
schemas, 7
selecting, 20-21
tables. See also tables

calculated fields, 116-118
creating, 305
filtering subqueries,

111-115
overview of, 6-7

datatypes, 49
BIGINT, 312
BINARY, 313
BIT, 312
CHAR, 310
columns, 8
CURSOR, 313

How can we make this index more useful? Email us at indexes@samspublishing.com

325datatypes

data and time, 312
DATETIME, 313
DECIMAL, 312
FLOAT, 312
INT, 312
MONEY, 312
NCHAR, 310
NTEXT, 310
NVARCHAR, 310
REAL, 312
SMALLDATETME, 313
SMALLINT, 312
SMALLMONEY, 312
strings, 310-311
TABLE, 313
TEXT, 311
TINYINT, 312
UNIQUEIDENTIFIER, 313
usefulness of, 309
VARBINARY, 313
VARCHAR, 311
XML, 313

date and time functions, 80-88
DateAdd() function, 83
DateDiff() function, 83
DateName() function, 83
DatePart() function, 83

DATETIME datatype, 313
Day() function, 83
DBMS (Database Management

System), 6
client server software, 14-15
connections, 16, 19-20
interactive tools, 126
query sort order, 38

search patterns and, 62
versions, 15

DEALLOCATE statement, 236
DECIMAL datatype, 312
DECLARE statements, 236-237
declaring variables, 210
default databases, selecting, 20-21
default values, tables, 193-194
defining

functions, 79
primary keys, 10
search patterns, 61

DELETE FROM statements, 184
DELETE statements, 183-184

guidelines, 185
syntax, 306
transaction processing, 255
triggers, 248-249
WHERE clause, 183

deleting
access rights, 284-285
column values, 183
data, 185
duplicate rows, 153-154
rows, 306
tables, 197-198
using accounts, 282

derived columns, 74. See also
aliases

DESC keyword, query results sort
order, 40-42

descending sort order, specifying,
40-42

dictionary sort order (query
results), 42

326 datatypes

DISABLE TRIGGER statement,
246

disabling accounts, 282
DISTINCT argument, 98
DISTINCT keyword, 32
downloading SQL Server, 292
DROP command, stored proce-

dures, 227-228
DROP FULLTEXT, 161
DROP LOGIN statement, 282
DROP statement, syntax, 306
DROP TABLE statement, 197-198
DROP TRIGGER statement, 245
dropping database objects, 306
duplicate rows, deleting, 153-154

E
ELEMENTS keyword, 263
empty strings, compared to NULL

values, 190
ENABLE TRIGGER statement,

246
enabling

accounts, 282
full-text searching, 159

encoding character sets, 269-270
equality operator (=), 47
equijoins, 131. See also joins
evaluation, order of, 55-57
event triggers, 243, 250

applying, 247-249
assigning, 246
creating, 244-245
dropping, 245
enabling/disabling, 246

example tables
creating, 300-301
customers table, 297-298
orderitems table, 298-299
orders table, 298
overview of, 295-296
productnotes table, 299
products table, 297
vendors table, 296

Execute button, 16
EXECUTE statement, 225
EXISTS statement, 119-121
Exp() function, 89
explicit commits, 255
explicit control, wildcard match-

ing, 158
EXPLICIT mode, 263
Extensible Markup Language. See

XML

F
FETCH statement

accessing cursors, 239
cursors, 238-240, 242

fields, 70. See also columns
calculated

applying subqueries to
create, 116-118

concatenating fields,
70-74

mathematical calcula-
tions, 75-77

overview, 69-70
views, 205-207

columns, 8

How can we make this index more useful? Email us at indexes@samspublishing.com

327fields

filtering
AND operator, 53-54
applications, 46
IN operator, 58-59
LIKE operator, 65-66
OR operator, 54-55
subqueries, 111-115
WHERE clause, 45-47

combining, 53-57
IN operator, 57-59
joins, 128-131
nonmatches, 49
NOT operator, 59-60
NULL values, 51
operators, 46-47
range of values, 50
values, 47-48

wildcards
LIKE operator, 61-62
percent sign (%), 62-64
underscore (_), 64-65

with views, 204-205
fixed length strings, 310
FLOAT datatype, 312
fn_helpcollations() function, 270
FOR XML clause, 260
foreign keys, 11, 124
formatting. See also configuring

applying, 162-170
full-text searching, 158-162
groups, 102-103

filtering, 103-106
ordering SELECT state-

ments, 108-109
sorting, 106-108

joins, 126-127
queries, 30
retrieved data with views,

203-204
server-based compared to

client-based, 70
statements, 189
subqueries, 111

creating calculated fields,
116-118

filtering, 111-115
testing with EXISTS,

119-121
tables, 187-193

creating aliases, 137-138
example, 300-301

triggers, 244-245
applying, 247-249
assigning, 246
dropping, 245
enabling/disabling, 246

user accounts, 282-283
white space, 29

FREETEXT, searching using,
163-164

FREETEXTTABLE() function,
169

FROM clause, 127
FROM keyword, 28
full-text searching, 157-158

applying, 162-170
configuring, 158-162

FulltextCatalogProperty() function,
162

fully qualified table names, 36

328 filtering

functions
Abs(), 89
aggregate

applying, 99
Avg(), 92-93
combining, 100
Count(), 94
creating groups, 102-103
filtering groups, 103-106
grouping data, 101-102
joins, 145-146
Max(), 95
Min(), 96-97
ordering SELECT state-

ments, 108-109
overview of, 91-92
sorting groups, 106-108
Sum(), 97

CharIndex(), 81
Cos(), 89
Count(), 145
date and time, 82-88
DateAdd(), 83
DateDiff(), 83
DateName(), 83
DatePart(), 83
Day(), 83
defining, 79
Exp(), 89
fn_helpcollations(), 270
FREETEXTTABLE(), 169
FulltextCatalogProperty(),

162
GetDate(), 83
Len(), 81

LFT(), 81
Lower(), 81
LTRIM(), 73, 81
Month(), 83
numeric, 88-89
Pi(), 89
Rand(), 89
Replace(), 81
Right, 81
Round(), 89
RTRIM(), 72, 81
Sin(), 89
Soundex(), 81-82
Sqrt(), 89
Square(), 89
Str(), 81
Substring(), 81
system, 80
Tan(), 89
text, 80-82
TRIM(), 73
types of, 80
Upper(), 80-81
Year(), 83

G
GetDate() function, 83
globalization, 269-270

case sensitivity, 273-275
character sets, 275-277
collation sequences, 270-272

GRANT statement, 284
greater than operator (>), 47

How can we make this index more useful? Email us at indexes@samspublishing.com

329greater than operator

greater than or equal to operator
(>=), 47

GROUP BY clause, 102-103
groups

creating, 102-103
data grouping, 101-102
filtering, 103-104, 106
operators, 56
SELECT statements, 108-109
sorting, 106-108
statements, 219-221

H
HAVING clause, 104
hostnames, 20

I
identity, 24, 191-193
implementing cursors, 235-236
IMPLICIT_TRANSACTIONS,

257
importing full-text indexes, 161
IN keyword, 59
IN operator, 57-59
indexes

creating, 304
full-text, 160-161
managing, 161-162

individual columns, 93
inner joins, 131-132
INSERT SELECT statement, 178,

307

INSERT statement
columns lists, 175
completing rows, 172-174
multiple rows, 176
omitting columns, 175
overview, 171
query data, 178
retrieved data, 177-178
security privileges, 172, 181
syntax, 306
transaction processing, 255
triggers, 247-248
VALUES, 175

installation
requirements, 291-292
SQL Server, 13, 292

INT datatype, 312
integration, SQL Server, 13
integrity, maintaining referential,

126
intelligent results, wildcard-based

searching, 158
intelligent stored procedures, build-

ing, 231-234
IS NULL operator, 47

J
joins

aggregate functions, 145-146
aliases, 137-138
applying, 125-126
conditions, 147
creating, 126-127

330 greater than or equal to operator

inner, 131-132
multiple tables, 132-134
overview of, 123
relational tables, 123-125
types of, 138-144
views, 202-203
WHERE clauses, 128-131

K
keys

foreign, 11, 124
primary, 9-11, 124, 190-191

customers example table,
298

orderitems example table,
299

orders example table,
298

productnotes example
table, 299

products example table,
297

vendors example table,
297

keywords
AND, 54
AS, 73-74
ASC, 42
DEFAULT, 193-194
DESC, 40-42
DISTINCT, 32
ELEMENTS, 263
FROM, 28

IN, 59
NOT, 59
OR, 55
OUTPUT, 228
overview of, 27
reserved words, 315-319
RIGHT, 143
TABLESAMPLE, 35
TOP, 33
UNION, 150-154
USE, 20-21

L
languages, SQL, 11
Left() function, 81
Len() function, 81
less than operator (<), 47
less than or equal to operator (<=),

47
LIKE operator, 61-66
limiting results, SELECT state-

ments, 33-35
lists, 7. See also tables
localization, 269-270

case sensitivity, 273-275
character sets, 275-277
collation sequences, 270-272

looping, 221-222
Lower() function, 81
LTRIM() function, 73, 81

How can we make this index more useful? Email us at indexes@samspublishing.com

331LTRIM() function

M
managing

case sensitivity, 273-275
security, 279

access control, 279-280
access rights, 283-285
users, 281-283

transaction processing,
253-257

master databases, 20-25. See also
databases

matching
conditions, 54-55
number of occurrences of

characters, 62-64
underscore (_) wildcard,

64-65
wildcards, 157-158

applying, 162-170
configuring, 158-162

mathematical calculations, 75-77
mathematical operators, 76
Max() function, 95
Microsoft SQL Server

Management Studio, 16
Min() function, 96-97
modes, EXPLICIT, 263
modifying

access rights, 284-285
autocommit, 257
collations, 272
passwords, 283
rows, 153-154

modulo (%) operator, 76
MONEY datatype, 312

Month() function, 83
multiple columns

calculating, 98
descending sort order, 42
sorting, 39-40

multiple computers, installing
client/software on, 14

multiple rows, INSERT statement,
176

multiple tables, joins, 132-134
multiple WHERE clauses, 152
multiplication (*) operator, 76
multistatement triggers, 249

N
N Prefix, 277
naming

aliases, 100, 137-138
logins, 283
queries, 29
savepoints, 256
tables, 7

fully qualified table
names, 36

renaming, 198
natural joins, 141. See also joins
navigating tables, 235
NCHAR datatype, 310
New Query button, 16
non-ANSI outer joins, 144
non-equality operator (< >), 47
nonmatches, WHERE clause, 49
nonnumeric data, 96
not greater than operator (>!), 47

332 managing

NOT keyword, 59
not less than operator (<!), 47
NOT operator

character searching and, 66
WHERE clauses, 59-60

NTEXT datatype, 310
NULL keyword, 183
NULL values

Avg() function, 92
compared to empty strings,

190
Count() function, 95
Max() function, 96
Min() function, 97
primary keys, 191-193
Sum() function, 98
table columns, 189-190
WHERE clause, 51
wildcards, 64

numeric functions, 80, 88-89
numeric values

quotes, 312
storing, 311

NVARCHAR datatype, 310

O
obtaining SQL Server, 292
OPEN statements

cursors, 237-238
opening cursors, 238

operators. See also symbols
AND, 53-54
combining, 55-57
defined, 53

grouping, 56
HAVING clause, 104
IN, 57-59
LIKE, 61-62, 65-66
mathematical, 76
NOT, 59-60
OR, 54-55
predicates, 62
WHERE clause, 46-47

optimizing
performance, 287-289
wildcards, 67

OR keyword, 55
OR operator, 54-57
ORDER BY clause, 262

positioning, 43
queries

combining, 154-155
sorting, 37-39

order of evaluation, 55-57
ordering SELECT statements,

108-109
orderitems table, 298-299
orders table, 298
outer joins, 141-144. See also joins
OUTOUT keyword, 228
overwriting tables, 189
owners, databases, 36

P
parameters, stored procedures,

228-231
parentheses (), WHERE clauses,

57

How can we make this index more useful? Email us at indexes@samspublishing.com

333passwords

passwords, 20, 283
patterns

defining, 61
wildcards, 65-66

percent sign (%) wildcard, 62-64
performance

optimizing, 287-289
SQL Server, 13
tables, 133
wildcard matching, 157

Pi() function, 89
pipe (|) symbol, 303
placeholders. See savepoints
portability, INSERT statements

and, 175
portable functions, 79
positioning clauses, 46
predicates (operators), 62
primary keys, 9-11, 124, 190-191

concepts, 10
customer example table, 298
NULL values, 193
orderitems example table, 299
orders example table, 298
productnotes example table,

299
products example table, 297
vendors example table, 297

processing
batch, 215
conditional, 217-219
subqueries, 113
transactions. See transaction

processing
productnotes table, 299

products table, 297
programming T-SQL, 209

conditional processing,
217-219

grouping statements, 219-221
looping, 221-222
variables, 210-216

Q
queries

aggregate functions
applying, 99
Avg(), 92-93
combining, 100
Count(), 94
Max(), 95
Min(), 96-97
overview of, 91-92
Sum(), 97

ascending/descending order,
40-42

calculated fields, 117
concatenating fields,

70-74
mathematical calcula-

tions, 75-77
overview, 69-70

case sensitivity, 42
combining, 113, 149-153

modifying rows, 153-154
sorting, 154-155

databases. See databases
defined, 111
formatting, 30

334 patterns

INSERT statement and, 178
joins

aggregate functions,
145-146

applying, 125-126
conditions, 147
creating, 126-127
inner, 131-132
multiple tables, 132-134
overview of, 123
relational tables,

123-125
types of, 138, 140-141,

143-144
WHERE clauses,

128-131
multiple columns, 39-40
multiple WHERE clauses,

152
names, 29
results, 37-39
subqueries

creating calculated fields,
116-118

filtering, 111-115
overview of, 111
testing with EXISTS,

119-121
table aliases, 138
unsorted data results, 28
views, 199
wildcards, 31

quotes
applying, 166

numeric values, 312
string values, 311
variables, 216

quotes (“), WHERE clause, 49

R
Rand() function, 89
ranges, WHERE clause, 50
ranking search results, 169-170
REAL datatype, 312
records, 9
referential integrity, maintaining,

126
reformatting retrieved data with

views, 203-204
relational databases, 38
relational tables, 123-125
renaming

logins, 283
tables, 198

Replace() function, 81
requirements, 291-292
reserved words, 20, 315-319
restrictions, views, 201
results

queries, 37-39
ranking search, 169-170
SELECT statements, 33-35
sets, 235

retrieving
aggregate functions

applying, 99
Avg(), 92-93

How can we make this index more useful? Email us at indexes@samspublishing.com

335retrieving

combining, 100
Count(), 94
Max(), 95
Min(), 96-97
overview of, 91-92
Sum(), 97

columns, 27-31
data as XML, 260-264
INSERT statements, 177-178
joins

aggregate functions,
145-146

applying, 125-126
conditions, 147
creating, 126-127
inner, 131-132
multiple tables, 132-134
overview of, 123
relational tables,

123-125
types of, 138-144
WHERE clauses,

128-131
rows, 32-33

reusable views, creating, 203
REVOKE statement, 284-285
RIGHT keyword, 143
Right() function, 81
ROLLBACK command (transac-

tion processing), 254
ROLLBACK TRANSACTION

statement, 307
rollbacks, 255

COMMIT statement, 255
defined, 253

ROLLBACK command, 254
savebacks and, 256
statements, 257

Round() function, 89
rows

adding to tables, 306
cursors, 235
deleting, 306
INSERT statement, 172-178
modifying, 153-154
overview of, 9
retrieving, 32-33
updating, 308
WHERE clause, 45-47

combining, 53-57
IN operator, 57-59
nonmatches, 49
NOT operator, 59-60
NULL values, 51
operators, 46-47
range of values, 50
values, 47-48

RTRIM() function, 72, 81
rules

primary keys, 10
views, 201
wildcards, 31

S
sa (system administrator), 19
SAVE TRANSACTION statement,

256, 307
savepoints, 256

336 retrieving

saving XML, 264, 266-267
scalability, 125
schemas, 7, 267
searching

CONTAINS, 164-168
FREETEXT, 163-164
full-text, 157-158

applying, 162-170
configuring, 158-162

patterns, 61
ranking results, 169-170
THESAURUS, 168
WHERE clause, 45-47

combining, 53-57
IN operator, 57-59
nonmatches, 49
NOT operator, 59-60
NULL values, 51
operators, 46-47
range of values, 50
values, 47-48

wildcards, 65-66
caret (^) character, 66
Like operator, 61-62
optimizing, 67
percent sign (%), 62-64
square brackets ([]),

65-66
underscore (_), 64-65

XML, 267-268
security

access control, 279-280
access rights, 283-285
managing, 279

SQL Server, 13
UPDATE statement, 181, 184
users, 281-283

SELECT statements, 27
AS keyword, 73-74
Avg() function, 93
calculated fields, 70
calculations, 76
columns, 27-31
concatenating fields, 71
Count() function, 95
GROUP BY clause, 102-103
IS NULL clause, 51
joins, 123

aggregate functions,
145-146

aliases, 137-138
applying, 125-126
conditions, 147
creating, 126-127
inner, 131-132
multiple tables, 132-134
relational tables, 123-125
types of, 138-144
WHERE clauses, 128-131

ORDER BY clause, 43
ordering, 108-109
queries

combining, 149-153
modifying rows, 153-154
multiple columns, 39-40
sorting, 37-39, 154-155
specifying sort direction,

40-42

How can we make this index more useful? Email us at indexes@samspublishing.com

337SELECT statements

results, 33-35
rows, 32-33
syntax, 308
WHERE clause, 45-47

checking against single
values, 47-48

combining, 53-57
filtering groups, 103-106
IN operator, 57-59
nonmatches, 49
NOT operator, 59-60
NULL values, 51
operators, 46-47
range of values, 50

selecting databases, 20-21
self joins, 140. See also joins
semicolons (;) in multiple state-

ments, 29
separating

names in queries, 29
statements, 29

sequences
case sensitivity, 273-275
collations, 269-272

server-based results formatting, 70
servers. See also SQL Server

client software, 14-15
downloading, 292
installation, 292

SET command, 182
simplicity, SQL Server, 13
Sin() function, 89
single columns, subqueries, 115
single quotes (‘), variables, 216

SMALLDATETIME datatype, 313
SMALLINT datatype, 312
SMALLMONEY datatype, 312
software, SQL Server clients,

14-18. See also applications
sorting

datatype functionality, 309
groups, 106-108
queries, 37-39

case sensitivity, 42
combining, 154-155
multiple columns, 39-40
specifying sort direction,

40-42
Soundex() function, 81-82
spaces, removing, 72
SP_HELPTRIGGER, 246
sp_rename, 198
SQL Server

client server software, 14-15
connections, 19-20
deleting/updating data, 185
downloading, 292
installation, 13, 292
overview of, 11-14
tools, 16-18
versions, 15

SQL Server 2000, 17-18
SQL Server 2005, 16-17
Sqrt() function, 89
square brackets ([]) wildcard,

65-66
Square() function, 89
standard deviation aggregate func-

338 SELECT statements

tions, 92
statements

ALTER LOGIN, 282
ALTER TABLE, 195-197,

283
case sensitivity, 29
clauses, 38
CLOSE, 237-238
COMMIT, 255
COMMIT TRANSACTION,

304
CREATE INDEX, 304
CREATE LOGIN, 282, 305
CREATE PROCEDURE, 305
CREATE TABLE, 187-193,

304-305
CREATE VIEW, 201, 306
DECLARE, 236-237
DELETE, 183-185

syntax, 306
transaction processing,

255
triggers, 248-249

DROP, 306
DROP LOGIN, 282
DROP TABLE, 197-198
FETCH, 238-242
formatting, 189
fully qualified table names, 36
GRANT, 284
grouping, 56, 219-221
INSERT

completing rows,
172-174

multiple rows, 176

omitting columns, 175
overview, 171
query data, 178
retrieved data, 177-178
security privileges, 172,

181
syntax, 306
transaction processing,

255
triggers, 247-248
VALUES, 175

INSERT SELECT, 307
OPEN, 237-238
REVOKE, 284-285
ROLLBACK TRANSAC-

TION, 307
rollbacks, 253-257
SAVE TRANSACTION, 256,

307
SELECT, 27

aggregate functions,
145-146

aliases, 137-138
applying joins, 125-126
AS keyword, 73-74
Avg() function, 93
columns, 27-31
combining, 53-57,

149-153
concatenating fields, 71
conditions, 147
Count() function, 95
creating calculated fields,

70
filtering groups, 103-106

How can we make this index more useful? Email us at indexes@samspublishing.com

339statements

GROUP BY clause,
102-103

IN operator, 57-59
joins, 123, 126-134
limiting results, 33-35
modifying rows, 153-154
multiple columns, 39-40
NOT operator, 59-60
ordering, 108-109
relational tables,

123-125
retrieving, 30
rows, 32-33
sorting queries, 37-39,

154-155
specifying sort direction,

40-42
syntax, 308
testing calculations, 76
types of joins, 138-144
WHERE clause, 45-51

stored procedures
building intelligent,

231-234
creating, 226-227
disadvantages of, 225
dropping, 227-228
executing, 225
overview, 223-224
parameters, 228-231
usefulness of, 224-225

syntax, 303-308
terminating, 29
triggers, 243, 250

applying, 247-249

assigning, 246
creating, 244-245
dropping, 245
enabling/disabling, 246

UPDATE, 181-185
syntax, 308
transaction processing,

255
triggers, 249

white space, 29
stored procedures, 22

building intelligent, 231-234
creating, 226-227, 305
disadvantages of, 225
dropping, 227-228
executing, 225
overview, 223-224
parameters, 228-231
sp_columns, 23-24
sp_databases, 22
sp_helplogins, 25
SP_HELPTRIGGER, 246
sp_helpuser, 25
sp_server_info, 24
sp_spaceused, 24
sp_statistics, 25
sp_tables, 23
usefulness of, 224-225

storing
date and time values, 312
numeric values, 311
strings, 310
XML, 264-267

Str() function, 81
strings

340 statements

datatypes, 310-311
empty, 190
fixed length, 310
percent sign (%), 62-64
quotes, 311

subqueries
calculated fields, 116-118
columns, 115
correlated, 117
EXISTS, 119-121
filtering, 111-115
overview of, 111
processing, 113
self joins, 139-140
UPDATE statement, 183

Substring() function, 81
subtraction (-) operator, 76
Sum() function, 97
support (XML), 259-260

retrieving data as, 260-264
searching, 267-268
storing, 264-267

symbols
> (greater than operator), 47
< (less than operator), 47

>! (not greater than operator),
47

<! (not less than operator), 47
% (modulo operator), 76
% (percent sign) wildcard,

62-64
() (parentheses), WHERE

clauses, 57
* (asterisk), 31

* (multiplication operator), 76
+ (addition operator), 76
- (subtraction operator), 76
= (equality operator), 47
>= (greater than or equal to

operator), 47
<= (less than or equal to oper-

ator), 47
syntax

COMMIT TRANSACTION
statement, 304

CREATE INDEX statement,
304

CREATE LOGIN statement,
305

CREATE PROCEDURE state-
ment, 305

CREATE TABLE statement,
304-305

CREATE VIEW statement,
306

DELETE statement, 306
DROP statement, 306
INSERT SELECT statement,

307
INSERT statement, 306
ROLLBACK TRANSAC-

TION statement, 307
SAVE TRANSACTION state-

ment, 307
SELECT statement, 308
statements, 303-308
UPDATE statement, 308

How can we make this index more useful? Email us at indexes@samspublishing.com

341system functions

system administrator (sa), 19
system functions, 80

T
T-SQL programming, 209

conditional processing,
217-219

grouping statements, 219-221
looping, 221-222
variables, 210-216

TABLE datatype, 313
tables

calculated fields
concatenating fields,

70-74
mathematical calcula-

tions, 75-77
overview, 69-70

Cartesian Product, 128
columns, 8-11
creating, 127, 305

CREATE TABLE state-
ment, 188-193

overview, 187
customers table, 297-298
default values, 193-194
deleting, 197-198
example, 300-301
fully qualified names, 36
functions of, 295-296
inserting data, 172-178
joins

aggregate functions,
145-146

applying, 125-126
conditions, 147
creating, 126-127
inner, 131-132
multiple tables, 132-134
overview, 123
relational tables, 123-125
types of, 138-144
WHERE clauses, 128-131

master databases, 21-25
naming, 7
NULL value columns,

189-190
orderitems table, 298-299
orders table, 298
overview of, 6-7
performance, 133
productnotes table, 299
products table, 297
renaming, 198
replacing, 189
reserved words and, 20
rows, 9

adding, 306
deleting, 306
updating, 308

SELECT statements, 27
limiting results, 33-35
retrieving columns, 27-31
retrieving rows, 32-33

subqueries
creating calculated fields,

116-118
filtering, 111-115
testing with EXISTS,

342 T-SQL programming

119-121
updating, 181-184, 195-197
vendors table, 296
views, 306
virtual, 199
WHERE clause, 45-47

combining, 53-57
IN operator, 57-59
nonmatches, 49
NOT operator, 59-60
NULL values, 51
operators, 46-47
range of values, 50
values, 47-48

TABLESAMPLE keyword, 35
Tan() function, 89
terminating statements, 29
testing

calculations, 76
subqueries with EXISTS,

119-121
text

CONTAINS, 164-168
FREETEXT, 163-164
full-text searching, 157-158

applying, 162-170
configuring, 158-162

functions, 80-82
TEXT datatype, 311
THESAURUS, 168
time, date and time functions,

82-88
TINYINT datatype, 312
tools, SQL Server, 16-18

TOP keyword, 33
totaling calculated values, 97
trailing spaces, wildcards, 64
transaction processing, 256

blocks, 307
COMMIT command, 255
defined, 253
explicit commits, 255
managing, 253-257
overview, 251-253
ROLLBACK command, 254
terminology, 253
writing to databases, 304

triggers, 243, 250
applying, 247-249
assigning, 246
creating, 244-245
dropping, 245
enabling/disabling, 246

TRIM() function, 73
trimming padded spaces, 72
types

of functions, 80
of joins, 138-144

U
underscore (_) wildcard, 64-65
Unicode, 275-277
UNION keyword, 150-154
unions, 149
UNIQUEIDENTIFIER datatype,

313
unsorted data, query results, 28

How can we make this index more useful? Email us at indexes@samspublishing.com

343UPDATE statement

UPDATE statement, 181-183
guidelines, 185
security privileges, 181, 184
subqueries, 183
syntax, 308
transaction processing, 255
triggers, 249

updating
data, 185
tables, 181-184, 195-197
views, 207-208

Upper() function, 80-81
USE keyword, 20-21
usernames, 20
users, managing, 281-283

V
values

concatenation, 71
NULL, 64
primary keys, 190-191
trimming padded space, 72
variables, 211-212
WHERE clause, 47-48

NULL, 51
range of, 50

VARBINARY datatype, 313
VARCHAR datatype, 311
variables

applying, 210, 214-216
declaring, 210
values, 211-212

viewing, 212-214
vendors table, 296
versions of SQL Server, 15
viewing

databases, 21-25
variables, 212-214

views
calculated fields, 205-207
creating, 201, 306
filtering data, 204-205
joins, 202-203
overview, 199
reformatting retrieved data,

203-204
reusable, 203
rules and restrictions, 201
updating, 207-208
usefulness of, 200

virtual tables, 199

W
websites, 300-301
WHERE clause, 45-47

checking for range of values,
50

combining, 53-57
DELETE statements, 183
joins, 128-131
groups, 103-106
IN operator, 57-59
multiple, 152
nonmatches, 49

344 UPDATE statement

NOT operator, 59-60
operators, 46-47
parentheses and, 57
queries, 149
quotes and, 49
Soundex() function, 82
subqueries, 114
UPDATE statements, 181-182
values, 47-48

NULL, 51
range of, 50

wildcards, 62
WHILE loop, 222
wildcards

applying, 67
caret (^) character, 66
full-text searching, 157-158

applying, 162-170
configuring, 158-162

LIKE operator, 61-62
natural joins, 141
percent sign (%), 62-64
queries, 31
underscore (_), 64-65

writing stored procedures, 225

X-Z
XML (Extensible Markup

Language)
datatypes, 313
searching, 267-268
storing, 264-267
support, 259-264

XPath, 264

How can we make this index more useful? Email us at indexes@samspublishing.com

345Year() function

This page intentionally left blank

Register this book and unlock benefits exclusive to the
owners of this book.

Registration benefits can include
n Additional content
n Book errata
n Source code, example files, and other downloads
n Increased membership discounts
n Discount coupons
n A chance to sign up to receive content updates, information on

new editions, and more

Book registration is free and takes only a few
easy steps:

1. Go to www.samspublishing.com/register

2. Enter the book’s ISBN (found above the barcode on the back of
your book).

3. You will be prompted to either register for or log in to
samspublishing.com.

4. Once you have completed your registration or log in, you will be
taken to your “My Registered Books” page.

5. This page will list any benefits associated with each title you
register, including links to content and coupon codes.

The benefits of book registration vary with each book, so be sure to
register every Sams Publishing book you own to see what else you
might unlock at www.samspublishing.com/register

REGISTER THIS BOOK

www.samspublishing.com/register
www.samspublishing.com/register

	Sams Teach Yourself Microsoft® SQL Server T-SQL in 10 Minutes
	Table of Contents
	Introduction
	Who Is This Book For?
	Companion Website
	Conventions Used in This Book

	1 Understanding SQL
	Database Basics
	What Is SQL?
	Try It Yourself
	Summary

	2 Introducing SQL Server
	What Is SQL Server?
	SQL Server Tools
	Summary

	3 Working with SQL Server
	Making the Connection
	Selecting a Database
	Learning About Databases and Tables
	Summary

	4 Retrieving Data
	The SELECT Statement
	Retrieving Individual Columns
	Retrieving Multiple Columns
	Retrieving All Columns
	Retrieving Distinct Rows
	Limiting Results
	Using Fully Qualified Table Names
	Summary

	5 Sorting Retrieved Data
	Sorting Data
	Sorting by Multiple Columns
	Specifying Sort Direction
	Summary

	6 Filtering Data
	Using the WHERE Clause
	The WHERE Clause Operators
	Summary

	7 Advanced Data Filtering
	Combining WHERE Clauses
	Using the IN Operator
	Using the NOT Operator
	Summary

	8 Using Wildcard Filtering
	Using the LIKE Operator
	Tips for Using Wildcards
	Summary

	9 Creating Calculated Fields
	Understanding Calculated Fields
	Concatenating Fields
	Performing Mathematical Calculations
	Summary

	10 Using Data Manipulation Functions
	Understanding Functions
	Using Functions
	Summary

	11 Summarizing Data
	Using Aggregate Functions
	Aggregates on Distinct Values
	Combining Aggregate Functions
	Summary

	12 Grouping Data
	Understanding Data Grouping
	Creating Groups
	Filtering Groups
	Grouping and Sorting
	SELECT Clause Ordering
	Summary

	13 Working with Subqueries
	Understanding Subqueries
	Filtering by Subquery
	Using Subqueries as Calculated Fields
	Checking for Existence with Subqueries
	Summary

	14 Joining Tables
	Understanding Joins
	Creating a Join
	Summary

	15 Creating Advanced Joins
	Using Table Aliases
	Using Different Join Types
	Using Joins with Aggregate Functions
	Using Joins and Join Conditions
	Summary

	16 Combining Queries
	Understanding Combined Queries
	Creating Combined Queries
	Summary

	17 Full-Text Searching
	Understanding Full-Text Searching
	Setting Up Full-Text Searching
	Performing Full-Text Searches
	Summary

	18 Inserting Data
	Understanding Data Insertion
	Inserting Complete Rows
	Inserting Multiple Rows
	Inserting Retrieved Data
	Summary

	19 Updating and Deleting Data
	Updating Data
	Deleting Data
	Guidelines for Updating and Deleting Data
	Summary

	20 Creating and Manipulating Tables
	Creating Tables
	Updating Tables
	Deleting Tables
	Renaming Tables
	Summary

	21 Using Views
	Understanding Views
	Using Views
	Summary

	22 Programming with T-SQL
	Understanding T-SQL Programming
	Using Variables
	Using Conditional Processing
	Grouping Statements
	Using Looping
	Summary

	23 Working with Stored Procedures
	Understanding Stored Procedures
	Why Use Stored Procedures
	Using Stored Procedures
	Summary

	24 Using Cursors
	Understanding Cursors
	Working with Cursors
	Summary

	25 Using Triggers
	Understanding Triggers
	Using Triggers
	Summary

	26 Managing Transaction Processing
	Understanding Transaction Processing
	Controlling Transactions
	Summary

	27 Working with XML
	Understanding SQL Server XML Support
	Retrieving Data as XML
	Storing XML Data
	Searching for XML Data
	Summary

	28 Globalization and Localization
	Understanding Character Sets and Collation Sequences
	Working with Collation Sequences
	Managing Case Sensitivity
	Working with Unicode
	Summary

	29 Managing Security
	Understanding Access Control
	Managing Users
	Managing Access Rights
	Summary

	30 Improving Performance
	Improving Performance
	Summary

	Appendixes
	A: Getting Started with SQL Server and T-SQL
	What You’ll Need
	Obtaining the Software
	Installing the Software
	Preparing for Your Lessons

	B: The Example Tables
	Understanding the Example Tables
	Creating the Example Tables

	C: T-SQL Statement Syntax
	BEGIN TRANSACTION
	ALTER TABLE
	COMMIT TRANSACTION
	CREATE INDEX
	CREATE LOGIN
	CREATE PROCEDURE
	CREATE TABLE
	CREATE VIEW
	DELETE
	DROP
	INSERT
	INSERT SELECT
	ROLLBACK TRANSACTION
	SAVE TRANSACTION
	SELECT
	UPDATE

	D: T-SQL Datatypes
	String Datatypes
	Numeric Datatypes
	Date and Time Datatypes
	Binary Datatypes
	Other Datatypes

	E: T-SQL Reserved Words

	Index
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X-Z

